Journal of Computer Science and Technology ›› 2021, Vol. 36 ›› Issue (3): 617-632.doi: 10.1007/s11390-021-1033-5

Special Issue: Artificial Intelligence and Pattern Recognition

• Special Section on Learning from Small Samples • Previous Articles     Next Articles

Multi-Scale Deep Cascade Bi-Forest for Electrocardiogram Biometric Recognition

Yu-Wen Huang1,2, Member, CCF, Gong-Ping Yang1,2,*, Senior Member, CCF, Kui-Kui Wang1, Hai-Ying Liu3, and Yi-Long Yin1, Senior Member, CCF        

  1. 1 School of Software, Shandong University, Jinan 250101, China;
    2 School of Computer, Heze University, Heze 274015, China;
    3 Department of Computer Engineering, Changji University, Changji 831100, China
  • Received:2020-09-29 Revised:2021-03-02 Online:2021-05-05 Published:2021-05-31
  • Contact: Gong-Ping Yang E-mail:gpyang@sdu.edu.cn
  • About author:Yu-Wen Huang received his Master's degree in computer science from Guangxi Normal University, Guilin, in 2009. He is an associate professor in the School of Computer, Heze University, Heze, and pursuing his Ph.D. degree at Shandong University, Jinan. His research interests include ECG recognition, biometrics and machine learning.
  • Supported by:
    This work was supported in part by the NSFC-Xinjiang Joint Fund under Grant No. U1903127 and in part by the Natural Science Foundation of Shandong Province under Grant No. ZR2020MF052.

Electrocardiogram (ECG) biometric recognition has emerged as a hot research topic in the past decade. Although some promising results have been reported, especially using sparse representation learning (SRL) and deep neural network, robust identification for small-scale data is still a challenge. To address this issue, we integrate SRL into a deep cascade model, and propose a multi-scale deep cascade bi-forest (MDCBF) model for ECG biometric recognition. We design the bi-forest based feature generator by fusing L1-norm sparsity and L2-norm collaborative representation to efficiently deal with noise. Then we propose a deep cascade framework, which includes multi-scale signal coding and deep cascade coding. In the former, we design an adaptive weighted pooling operation, which can fully explore the discriminative information of segments with low noise. In deep cascade coding, we propose level-wise class coding without backpropagation to mine more discriminative features. Extensive experiments are conducted on four small-scale ECG databases, and the results demonstrate that the proposed method performs competitively with state-of-the-art methods.

Key words: electrocardiogram (ECG) biometric recognition; small-scale data; deep cascade bi-forest; multi-scale division; sparse representation learning;

[1] Odinaka I, Lai P H, Kaplan A D, Osullivan J A, Sirevaag E J, Rohrbaugh J W. ECG biometric recognition:A comparative analysis. IEEE Trans. Information Forensics and Security, 2012, 7(6):1812-1824. DOI:10.1109/TIFS.2012.2215324.
[2] Kim M, Pan S B. Deep learning based on 1-D ensemble networks using ECG for real time user recognition. IEEE Trans. Industrial Informatics, 2019, 15(10):5656-5663. DOI:10.1109/TII.2019.2909730.
[3] Wang J, She M, Nahavandi S, Kouzani A Z. Human identification from ECG signals via sparse representation of local segments. IEEE Signal Processing Letters, 2013, 20(10):937-940. DOI:10.1109/LSP.2013.2267593.
[4] Jaafar H, Ramli N, Nasir A S A. Implementation of kernel sparse representation classifier for ECG biometric system. Journal of Telecommunication, Electronic and Computer Engineering, 2018, 10(1-13):89-94
[5] Li R, Yang G, Wang K, Huang Y, Yuan F, Yin Y. Robust ECG biometrics using GNMF and sparse representation. Pattern Recognition Letters, 2019, 129:70-76. DOI:10.1016/j.patrec.2019.11.005.
[6] Goshvarpour A, Goshvarpour A. Human identification using a new matching pursuit-based feature set of ECG. Computer Methods and Programs in Biomedicine, 2019, 172:87-94. DOI:10.1016/j.cmpb.2019.02.009.
[7] Zhang L, Liu J, Zhang B, Zhang D, Zhu C. Deep cascade model-based face recognition:When deep-layered learning meets small data. IEEE Trans. Image Process, 2019, 29:1016-1029. DOI:10.1109/TIP.2019.2938307.
[8] Abdeldayem S S, Bourlai T. A novel approach for ECG-based human identification using spectral correlation and deep learning. IEEE Trans. Biometrics, Behavior, and Identity Science, 2020, 2(1):1-14. DOI:10.1109/TBIOM.2019.2947434.
[9] Labati R D, Munoz E, Piuri V, Sassi R, Scotti F. DeepECG:Convolutional neural networks for ECG biometric recognition. Pattern Recognition Letter, 2019, 126:78-85. DOI:10.1016/j.patrec.2018.03.028.
[10] da Silva Luz E, Moreira G, Oliveira L S, Schwartz W R, Menotti D. Learning deep off-the-person heart biometrics representations. IEEE Trans. Information Forensics and Security, 2017, 13(5):1258-1270. DOI:10.1109/TIFS.2017.2784362.
[11] Hammad M, Liu Y, Wang K. Multimodal biometric authentication systems using convolution neural network based on different level fusion of ECG and fingerprint. IEEE Access, 2019, 7:26527-26542. DOI:10.1109/ACCESS.2018.2886573.
[12] Zhang Y, Xiao Z, Guo Z, Wang Z. ECG-based personal recognition using a convolutional neural network. Pattern Recognition Letter, 2019, 125:668-676. DOI:10.1016/j.patrec.2019.07.009.
[13] Zhou Z, Feng J. Deep forest:Towards an alternative to deep neural networks. In Proc. the 26th Int. Artificial Intelligence, August 2017, pp.3553-3559. DOI:10.24963/ijcai.2017/497.
[14] Liu X B, Wang R, Cai Z, Cai Y, Yin X. Deep multigrained cascade forest for hyperspectral image classification. IEEE Trans. Geoscience and Remote Sensing, 2019, 57(10):8169-8183. DOI:0.1109/TGRS.2019.2918587.
[15] Wen H, Zhang J, Lin Q, Yang K, Huang P. Multi-level deep cascade trees for conversion rate prediction in recommendation system. In Proc. the 23rd Int. Artificial Intelligence, May 2019, pp.338-345. DOI:10.1609/aaai.v33i01.3301338.
[16] Lim C, Woo W L, Dlay S, Gao B. Heartrate-dependent heartwave biometric identification with thresholding-based GMM-HMM methodology. IEEE Trans. Industrial Informatics, 2019, 15(1):45-53. DOI:10.1109/TII.2018.2874462.
[17] Meltzer D, Luengo D. Fiducial ECG-based biometry:Comparison of classifiers and dimensionality reduction methods. In Proc. the 42nd Int. Telecommunications and Signal Processing, Jul. 2019, pp.552-556. DOI:10.1109/TSP.2019.8768891.
[18] Diab M O, Seif A, El-Abed M, Sabbah M. Individual identification using ECG signals. Journal of Computer and Communications, 2018, 6:74-80. DOI:10.4236/jcc.2018.61008.
[19] Dong X, Si W, Huang W. ECG-based identity recognition via deterministic learning. Biotechnology & Biotechnological Equipment, 2018, 32(3):769-777. DOI:10.1080/13102818.2018.1428500.
[20] Rahman S A E. Biometric human recognition system based on ECG. Multimedia Tools and Applications, 2019, 78(3):17555-17572. DOI:10.1007/s11042-019-7152-0.
[21] Srivastva R, Singh Y N. Human recognition using discrete cosine transform and discriminant analysis of ECG. In Proc. the 4th Int. Image Information Processing, Dec. 2017, pp.368-372. DOI:10.1109/ICIIP.2017.8313742.
[22] Bassiouni M M, El-Dahshan E A, Khalefa W, Salem A M. Intelligent hybrid approaches for human ECG signals identification. Signal, Image and Video Processing, 2018, 12(5):941-949. DOI:10.1007/s11760-018-1237-5.
[23] Ur Rehman U, Kamal K, Iqbal J, Sheikh M F. Biometric identification through ECG signal using a hybridized approach. In Proc. the 5th Int. Computing and Artificial Intelligence, Apr. 2019, pp.226-230. DOI:10.1145/3330482.3330496.
[24] Wu S C, Chen P T, Swindlehurst A L, Hung P L. Cancelable biometric recognition with ECGs:Subspace-based approaches. IEEE Trans. Information Forensics and Security, 2019, 14(5):1323-1336. DOI:10.1109/TIFS.2018.2876838.
[25] He H, Tan Y. Automatic pattern recognition of ECG signals using entropy-based adaptive dimensionality reduction and clustering. Applied Soft Computing, 2017, 55:238-252. DOI:10.1016/j.asoc.2017.02.001.
[26] Srivastva R, Singh Y. ECG biometric analysis using WalshHadamard transform. In Advances in Data and Information Sciences, Kolhe M L, Trivedi M C, Tiwari S, Singh V (eds.), Springer, 2018, pp.201-210. DOI:10.1007/978-981-10-8360-019.
[27] Zheng G, Wang Y, Sun X, Sun Y, Ji S. Study on Matthew effect based feature extraction for ECG biometric. In Proc. the 8th Int. Conf. Intelligent Science and Big Data Engineering, Aug. 2018, pp.623-634. DOI:10.1007/978-3-030-02698-1-54.
[28] Pinto J R, Cardoso J S, Lourenço A. Evolution, current challenges, and future possibilities in ECG biometrics. IEEE Access, 2018, 6:34746-34776. DOI:10.1109/ACCESS.2018.2849870.
[29] Pal A, Singh Y. ECG biometric recognition. In Proc. the 4th Int. Conf. Mathematics and Computing, Jan. 2018, pp.61-73. DOI:10.1007/978-981-13-0023-37.
[30] Hejazi M, Al-Haddad S A R, Singh Y P, Hashim S J, Aziz A F A. ECG biometric authentication based on non-fiducial approach using kernel methods. Digital Signal Processing, 2016, 52:72-86. DOI:10.1016/j.dsp.2016.02.008.
[31] Chen H, Huang C, Huang Q, Zhang Q, Wang W. ECGadv:Generating adversarial electrocardiogram to misguide arrhythmia classification system. In Proc. the 34th AAAI Conference on Artificial Intelligence, Feb. 2020, pp.3446-3453. DOI:10.1609/aaai.v34i04.5748.
[32] Utkin L V, Ryabinin M A. Discriminative metric learning with deep forest. International Journal of Artificial Intelligence Tools, 2017, 28(2):195-204. DOI:10.1142/S0218213019500076.
[33] Su R, Liu X, Wei L, Zou Q. Deep-Resp-forest:A deep forest model to predict anti-cancer drug response. Methods, 2019, 166:91-102. DOI:10.1016/j.ymeth.2019.02.009.
[34] Pang M, Ting K M, Zhao P, Zhou Z. Improving deep forest by confidence screening. In Proc. the 20th Int. Data Mining, Nov. 2018, pp.1194-1199. DOI:10.1109/ICDM.2018.00158.
[35] Lan X, Zhang S, Yuen P C, Chellappa R. Learning common and feature-specific patterns:A novel multiple-sparse-representation-based tracker. IEEE Trans. Image Processing, 2017, 27(4):2022-2037. DOI:10.1109/TIP.2017.2777183.
[36] Panagakis Y, Kotropoulos C, Arce G R. Music genre classification via joint sparse low-rank representation of audio features. IEEE/ACM Trans. Audio, Speech, and Language Processing, 2014, 22(12):1905-1917. DOI:10.1109/TASLP.2014.2355774.
[37] Wright J, Yang A Y, Ganesh A, Sastry S, Ma Y. Robust face recognition via sparse representation. IEEE Trans. Pattern Analysis and Machine Intelligence, 2009, 31(2):210-227. DOI:10.1109/TPAMI.2008.79.
[38] Moody G B, Mark R G. The impact of the MITBIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, 2001, 20(3):45-50. DOI:10.1109/51.932724.
[39] Bousseljot R, Kreiseler D, Schnabel A. Nutzung der EKGsignaldatenbank CARDIODAT der PTB uber das internet. Biomedizinische Technik/biomedical Engineering, 2009, 40(s1):317-318. DOI:10.1515/bmte.1995.40.s1.317.
[40] Da Silva H P, Lourenço A, Fred A, Raposo N, Airesde-Sousa M. Check your biosignals here:A new dataset for off-the-person ECG biometrics. Computer Methods and Programs in Biomedicine, 2014, 113(2):503-514. DOI:10.1016/j.cmpb.2013.11.017.
[41] Pouryayevali S, Wahabi S, Hari S, Hatzinakos D. On establishing evaluation standards for ECG biometrics. In Proc. the 2014 Int. Conf. Acoustics, Speech and Signal Processing, May 2014, pp.3774-3778. DOI:10.1109/ICASSP.2014.6854307.
[42] Pan J, Tompkins W J. A real-time QRS detection algorithm. IEEE Trans. Biomedical Engineering, 1985, BME-32(3):230-236. DOI:10.1109/TBME.1985.325532.
[43] Biel L, Pettersson O, Philipson L, Wide P. ECG analysis:A new approach in human identification. IEEE Trans. Instrumentation and Measurement, 2001, 50(3):808-812. DOI:10.1109/19.930458.
[44] Chan A A, Hamdy M M, Badre A, Badee V. Wavelet distance measure for person identification using electrocardiograms. IEEE Trans. Instrumentation & Measurement, 2008, 57(2):248-253. DOI:10.1109/TIM.2007.909996.
[45] Yang J, Yu K, Gong Y, Huang T S. Linear spatial pyramid matching using sparse coding for image classification. In Proc. the 2009 Computer Vision and Pattern Recognition, Jun. 2009, pp.1794-1801. DOI:10.1109/CVPR.2009.5206757.
[46] Wang K, Yang G, Huang Y, Yin Y. Multi-scale differential feature for ECG biometrics with collective matrix factorization. Pattern Recognition, 2020, 102:Article No. 107211. DOI:10.1016/j.patcog.2020.107211.
[47] Chu Y, Shen H, Huang K. ECG authentication method based on parallel multi-scale one-dimensional residual network with center and margin loss. IEEE Access, 2019, 7:51598-51607. DOI:10.1109/ACCESS.2019.2912519.
[48] Komeili M, Louis W, Armanfard N, Hatzinakos D. Feature selection for nonstationary data:Application to human recognition using medical biometrics. IEEE Trans. Cybern., 2018, 48(5):1446-1459. DOI:10.1109/TCYB.2017.2702059.
[49] Huang Y W, Yang G P, Wang K K, Liu H Y, Yin Y L. Learning joint and specific patterns:A unified sparse representation for off-the-person ECG biometric recognition. IEEE Trans. Information Forensics & Security, 2021, 16(1):147-160. DOI:10.1109/TIFS.2020.3006384.
[50] Lynn H M, Pan S B, Kim P. A deep bidirectional GRU network model for biometric electrocardiogram classification based on recurrent neural networks. IEEE Access, 2019, 7:145395-145405. DOI:10.1109/ACCESS.2019.2939947.
[51] Louis W, Komeili M, Hatzinakos D. Continuous authentication using one-dimensional multi-resolution local binary patterns (1DMRLBP) in ECG biometrics. IEEE Trans. Information Forensics & Security, 2016, 11(12):2818-2832. DOI:10.1109/TIFS.2016.2599270.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhou Di;. A Recovery Technique for Distributed Communicating Process Systems[J]. , 1986, 1(2): 34 -43 .
[2] Chen Shihua;. On the Structure of Finite Automata of Which M Is an(Weak)Inverse with Delay τ[J]. , 1986, 1(2): 54 -59 .
[3] Wang Jianchao; Wei Daozheng;. An Effective Test Generation Algorithm for Combinational Circuits[J]. , 1986, 1(4): 1 -16 .
[4] Chen Zhaoxiong; Gao Qingshi;. A Substitution Based Model for the Implementation of PROLOG——The Design and Implementation of LPROLOG[J]. , 1986, 1(4): 17 -26 .
[5] Huang Heyan;. A Parallel Implementation Model of HPARLOG[J]. , 1986, 1(4): 27 -38 .
[6] Zheng Guoliang; Li Hui;. The Design and Implementation of the Syntax-Directed Editor Generator(SEG)[J]. , 1986, 1(4): 39 -48 .
[7] Huang Xuedong; Cai Lianhong; Fang Ditang; Chi Bianjin; Zhou Li; Jiang Li;. A Computer System for Chinese Character Speech Input[J]. , 1986, 1(4): 75 -83 .
[8] Xu Xiaoshu;. Simplification of Multivalued Sequential SULM Network by Using Cascade Decomposition[J]. , 1986, 1(4): 84 -95 .
[9] Tang Tonggao; Zhao Zhaokeng;. Stack Method in Program Semantics[J]. , 1987, 2(1): 51 -63 .
[10] Zhong Renbao; Xing Lin; Ren Zhaoyang;. An Interactive System SDI on Microcomputer[J]. , 1987, 2(1): 64 -71 .

ISSN 1000-9000(Print)

         1860-4749(Online)
CN 11-2296/TP

Home
Editorial Board
Author Guidelines
Subscription
Journal of Computer Science and Technology
Institute of Computing Technology, Chinese Academy of Sciences
P.O. Box 2704, Beijing 100190 P.R. China
Tel.:86-10-62610746
E-mail: jcst@ict.ac.cn
 
  Copyright ©2015 JCST, All Rights Reserved