|
Journal of Computer Science and Technology ›› 2021, Vol. 36 ›› Issue (5): 1002-1021.doi: 10.1007/s11390-021-1217-z
Special Issue: Artificial Intelligence and Pattern Recognition
• Special Section of APPT 2021 (Part 1) • Previous Articles Next Articles
Tong Chen1, Ji-Qiang Liu1, He Li1, Shuo-Ru Wang1, Wen-Jia Niu1,*, Member, CCF En-Dong Tong1,*, Member, CCF, Liang Chang2, Qi Alfred Chen3, and Gang Li4, Member, IEEE
[1] Fabisch A, Petzoldt C, Otto M, Kirchner F. A survey of behavior learning applications in robotics-State of the art and perspectives. arXiv:1906.01868, 2019. https://arxiv.org/abs/1906.01868, June 2021. [2] Silver D, Huang A, Maddison C J et al. Mastering the game of Go with deep neural networks and tree search. Nature, 2016, 529(7587):484-489. DOI:10.1038/nature16961. [3] Mnih V, Kavukcuoglu K, Silver D et al. Human-level control through deep reinforcement learning. Nature, 2015, 518(7540):529-533. DOI:10.1038/nature14236. [4] Tamar A, Wu Y, Thomas G, Levine S, Abbeel P. Value iteration networks. In Proc. the 30th International Conference on Neural Information Processing Systems, Dec. 2016, pp.2154-2162. [5] Watkins C. Learning from delayed rewards[Ph.D. Thesis]. University of Cambridge, England, 1989. [6] Grounds M, Kudenko D. Parallel reinforcement learning with linear function approximation. In Proc. the 6th European Conference on Adaptive and Learning Agents and Multiagent Systems:Adaptation and Multi-Agent Learning, May 2007, Article No. 45. DOI:10.1145/1329-125.1329179. [7] Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M. Playing Atari with deep reinforcement learning. In Proc. the 27th Conference on Neural Information Processing Systems, Dec. 2013. [8] Barto G A, Sutton S R, Anderson W C. Neuron like elements that can solve difficult learning control problems. IEEE Trans. Systems, Man, & Cybernetics, 1983, SMC-13(5):834-846. DOI:10.1109/TSMC.1983.6313077. [9] Mnih V, Badia A P, Mirza M, Graves A, Harley T, Lillicrap T P, Silver D, Kavukcuoglu K. Asynchronous methods for deep reinforcement learning. In Proc. the 33rd International Conference on Machine Learning, Jun. 2016, pp.1928-1937. [10] Lillicrap T, Hunt J J, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D. Continuous control with deep reinforcement learning. arXiv:1509.02971, 2016. http://arxiv.org/abs/1509.02971, May 2021. [11] Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. Proximal policy optimization algorithms. arXiv:1707.06347, 2017. https://arxiv.org/abs/1707.06347, May 2021. [12] Babaeizadeh M, Frosio I, Tyree S, Clemons J, Kautz J. GA3C:GPU-based A3C for deep reinforcement learning. In Proc. the 30th Conference on Neural Information Processing Systems, Dec. 2016. [13] Cho H, Oh P, Park J, Jung W, Lee J. FA3C:FPGAaccelerated deep reinforcement learning. In Proc. the 24th International Conference on Architectural Support for Programming Languages and Operating Systems, Apr. 2019, pp.499-513. DOI:10.1145/3297858.3304058. [14] Huang S, Papernot N, Goodfellow I, Duan Y, Abbeel P. Adversarial attacks on neural network policies. arXiv:170-2.02284, 2017. https://arxiv.org/abs/1702.02284, February 2021. [15] Yuan Z, Gong Y. Improving the speed delivery for robotic warehouses. IFAC-PapersOnLine, 2016, 49(12):1164-1168. DOI:10.1016/j.ifacol.2016.07.661. [16] McKee J. Speeding Fermat's factoring method. Math. Comput., 1999, 68(228):1729-1737. DOI:10.1090/S0025-5718-99-01133-3. [17] Chinchor N. MUC-4 evaluation metrics. In Proc. the 4th Message Understanding Conference, Jun. 1992, pp.22-29. DOI:10.3115/1072064.1072067. [18] Koutník J, Schmidhuber J, Gomez F. Evolving deep unsupervised convolutional networks for vision-based reinforcement learning. In Proc. the 14th Conference on Genetic and Evolutionary Computation, Jul. 2014, pp.541-548. DOI:10.1145/2576768.2598358. [19] Babaeizadeh M, Frosio I, Tyree S, Clemons J, Kautz J. Reinforcement learning through asynchronous advantage actor-critic on a GPU. arXiv:1611.06256, 2016. https://arxiv.org/abs/1611.06256, November 2020. [20] Bojchevski A, Gunnemann S. Adversarial attacks on node embeddings via graph poisoning. arXiv:1809.01093, 2018. https://arxiv.org/abs/1809.01093, May 2021. [21] Xiao H, Xiao H, Eckert C. Adversarial label flips attack on support vector machines. In Proc. the 20th European Conference on Artificial Intelligence, Aug. 2012, pp.870-875. DOI:10.3233/978-1-61499-098-7-870. [22] Zugner D, Gunnemann S. Adversarial attacks on graph neural networks via meta learning. arXiv:1902.08412, 2019. https://arxiv.org/abs/1902.08412, February 2021. [23] Goodfellow I, Shlens J, Szegedy C. Explaining and harnessing adversarial examples. arXiv:1412.6572, 2014. https://arxiv.org/abs/1412.6572, March 2021. [24] Kurakin A, Goodfellow I, Bengio S. Adversarial examples in the physical world. In Proc. the 5th International Conference on Learning Representations, Apr. 2017. [25] Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R. Intriguing properties of neural networks. arXiv:1312.6199, 2013. https://arxiv.org/abs/1312.6199, February 2021. [26] Huang Y, Zhu Q. Manipulating reinforcement learning:Poisoning attacks on cost signals. arXiv:2002.03827, 2020. https://arxiv.org/abs/2002.03827, June 2021. [27] Tan A, Lu N, Xiao D. Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback. IEEE Transactions on Neural Networks, 2008, 19(2):230-244. DOI:10.1109/TNN.2007.905839. [28] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, WardeFarley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. In Proc. the 27th Neural Information Processing Systems, Dec. 2014, pp.2672-2680. [29] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In Proc. the 29th IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2016, pp.770-778. DOI:10.1109/CVPR.2016.90. [30] Szegedy C, Liu W, Jia Y, Serrmanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In Proc. the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2015. DOI:10.1109/CVPR.2015.7298594. [31] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014. https://arxiv.org/abs/1409.1556, April 2021. [32] Huang G, Liu Z, Van Der Maaten L Q, Weinberger K. Densely connected convolutional networks. In Proc. the 30th IEEE Conference on Computer Vision and Pattern Recognition, Jul. 2017, pp.2261-2269. DOI:10.1109/CVPR.2017.243. [33] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6):84-90. DOI:10.1145/3065386. |
[1] | Tong Ding, Ning Liu, Zhong-Min Yan, Lei Liu, and Li-Zhen Cui. An Efficient Reinforcement Learning Game Framework for UAV-Enabled Wireless Sensor Network Data Collection [J]. Journal of Computer Science and Technology, 2022, 37(6): 1356-1368. |
[2] | Tian-Yu Zhao, Man Zeng, and Jian-Hua Feng. An Exercise Collection Auto-Assembling Framework with Knowledge Tracing and Reinforcement Learning [J]. Journal of Computer Science and Technology, 2022, 37(5): 1105-1117. |
[3] | Qing-Bin Liu, Shi-Zhu He, Kang Liu, Sheng-Ping Liu, Jun Zhao. A Unified Shared-Private Network with Denoising for Dialogue State Tracking [J]. Journal of Computer Science and Technology, 2021, 36(6): 1407-1419. |
[4] | Jia-Ke Ge, Yan-Feng Chai, Yun-Peng Chai. WATuning: A Workload-Aware Tuning System with Attention-Based Deep Reinforcement Learning [J]. Journal of Computer Science and Technology, 2021, 36(4): 741-761. |
[5] | Yan Zheng, Jian-Ye Hao, Zong-Zhang Zhang, Zhao-Peng Meng, Xiao-Tian Hao. Efficient Multiagent Policy Optimization Based on Weighted Estimators in Stochastic Cooperative Environments [J]. Journal of Computer Science and Technology, 2020, 35(2): 268-280. |
[6] | Lei Cui, Youyang Qu, Mohammad Reza Nosouhi, Shui Yu, Jian-Wei Niu, Gang Xie. Improving Data Utility Through Game Theory in Personalized Differential Privacy [J]. Journal of Computer Science and Technology, 2019, 34(2): 272-286. |
[7] | Ai-Wen Jiang, Bo Liu, Ming-Wen Wang. Deep Multimodal Reinforcement Network with Contextually Guided Recurrent Attention for Image Question Answering [J]. , 2017, 32(4): 738-748. |
[8] | Mahsa Chitsaz, and Chaw Seng Woo, Member, IEEE. Software Agent with Reinforcement Learning Approach for Medical Image Segmentation [J]. , 2011, 26(2): 247-255. |
|
|