|
Journal of Computer Science and Technology ›› 2021, Vol. 36 ›› Issue (3): 478-493.doi: 10.1007/s11390-021-1331-y
Special Issue: Computer Graphics and Multimedia
• Special Section of CVM 2021 • Previous Articles Next Articles
Lan Chen1,2, Member, CCF, Juntao Ye1, Member, CCF, and Xiaopeng Zhang1,3,*, Member, CCF, ACM, IEEE
[1] Liang J, Lin M C. Machine learning for digital try-on:Challenges and progress. Computational Visual Media, 2021, 7(2):159-167. DOI:10.1007/s41095-020-0189-1. [2] Wang M, Lyu X Q, Li Y J, Zhang F L. VR content creation and exploration with deep learning:A survey. Computational Visual Media, 2020, 6(1):3-28. DOI:10.1007/s41095-020-0162-z. [3] Terzopoulos D, Platt J, Barr A, Fleischer K. Elastically deformable models. In Proc. the 14th Annual Conference on Computer Graphics and Interactive Techniques, August 1987, pp.205-214. DOI:10.1145/37401.37427. [4] Provot X. Collision and self-collision handling in cloth model dedicated to design garments. In Proc. the Eurographics Workshop on Computer Animation and Simulation, September 1997, pp.177-189. DOI:10.1007/978-3-7091-6874-5_13. [5] Baraff D, Witkin A. Large steps in cloth simulation. In Proc. the 25th Annual Conference on Computer Graphics and Interactive Techniques, July 1998, pp.43-54. DOI:10.1145/280814.280821. [6] Bridson R, Marino S, Fedkiw R. Simulation of clothing with folds and wrinkles. In Proc. the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 2003, pp.28-36. DOI:10.1145/1198555.1198573. [7] Wang H, Hecht F, Ramamoorthi R, O'Brien J. Examplebased wrinkle synthesis for clothing animation. ACM Trans. Graph., 2010, 29(4):Article No. 107. DOI:10.1145/1778765.1778844. [8] Zurdo J S, Brito J P, Otaduy M A. Animating wrinkles by example on non-skinned cloth. IEEE Trans. Visual. Comput. Graph., 2013, 19(1):149-158. DOI:10.1109/TVCG.2012.79. [9] Santesteban I, Otaduy M A, Casas D. Learning-based animation of clothing for virtual try-on. Computer Graphics Forum, 2019, 38(2):355-366. DOI:10.1111/cgf.13643. [10] Feng W W, Yu Y, Kim B U. A deformation transformer for real-time cloth animation. ACM Trans. Graph., 2010, 29(4):Article No. 108. DOI:10.1145/1778765.1778845. [11] De Aguiar E, Sigal L, Treuille A, Hodgins J K. Stable spaces for real-time clothing. ACM Trans. Graph., 2010, 29(3):Article No. 106. DOI:10.1145/1833351.1778843. [12] Kavan L, Gerszewski D, Bargteil A W, Sloan P P. Physics-inspired upsampling for cloth simulation in games. ACM Trans. Graph., 2011, 30(4):Article No. 93. DOI:10.1145/2010324.1964988. [13] Chen L, Ye J, Jiang L, Ma C, Cheng Z, Zhang X. Synthesizing cloth wrinkles by CNN-based geometry image superresolution. Computer Animation and Virtual Worlds, 2018, 29(3/4):Article No. e1810. DOI:10.1002/cav.1810. [14] Oh Y J, Lee T M, Lee I K. Hierarchical cloth simulation using deep neural networks. In Proc. the 2018 Computer Graphics International, June 2018, pp.139-146. DOI:10.1145/3208159.3208162. [15] Lähner Z, Cremers D, Tung T. DeepWrinkles:Accurate and realistic clothing modeling. In Proc. the 15th European Conference on Computer Vision, September 2018, pp.698-715. DOI:10.1007/978-3-030-01225-0_41. [16] Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z. Photorealistic single image super-resolution using a generative adversarial network. In Proc. the 2017 IEEE Conference on Computer Vision and Pattern Recognition, July 2017, pp.105-114. DOI:10.1109/CVPR.2017.19. [17] Zhang Y, Tian Y, Kong Y, Zhong B, Fu Y. Residual dense network for image super-resolution. In Proc. the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2018, pp.2472-2481. DOI:10.1109/CVPR.2018.00262. [18] Gu X, Gortler S J, Hoppe H. Geometry images. ACM Trans. Graph., 2002, 21(3):355-361. DOI:10.1145/566654.566589. [19] Narain R, Samii A, O'Brien J F. Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph., 2012, 31(6):Article No. 152. DOI:10.1145/2366145.2366171. [20] Liu T, Bargteil A W, O'Brien J F, Kavan L. Fast simulation of mass-spring systems. ACM Trans. Graph., 2013, 32(6):Article No. 124. DOI:10.1145/2508363.2508406. [21] Guan P, Reiss L, Hirshberg D A, Weiss A, Black M J. DRAPE:Dressing any person. ACM Trans. Graph., 2012, 31(4):Article No. 35. DOI:10.1145/2185520.2185531. [22] Kim D, Koh W, Narain R, Fatahalian K, Treuille A, O'Brien J F. Near-exhaustive precomputation of secondary cloth effects. ACM Trans. Graph., 2013, 32(4):Article No. 87. DOI:10.1145/2461912.2462020. [23] Gundogdu E, Constantin V, Seifoddini A, Dang M, Salzmann M, Fua P. GarNet:A two-stream network for fast and accurate 3D cloth draping. In Proc. the 2019 IEEE/CVF International Conference on Computer Vision, Oct. 27-Nov 2, 2019, pp.8738-8747. DOI:10.1109/ICCV.2019.00883. [24] Wang T Y, Ceylan D, Popovic J, Mitra N J. Learning a shared shape space for multimodal garment design. ACM Trans. Graph., 2018, 37(6):Article No. 203. DOI:10.1145/3272127.3275074. [25] Wang T Y, Shao T, Fu K, Mitra N J. Learning an intrinsic garment space for interactive authoring of garment animation. ACM Transactions on Graphics, 2019, 38(6):Article No. 220. DOI:10.1145/3355089.3356512. [26] Hahn F, Thomaszewski B, Coros S, Sumner R W, Cole F, Meyer M, DeRose T, Gross M. Subspace clothing simulation using adaptive bases. ACM Trans. Graph., 2014, 33(4):Article No. 105. DOI:10.1145/2601097.2601160. [27] Xiao Y P, Lai Y K, Zhang F L, Li C P, Gao L. A survey on deep geometry learning:From a representation perspective. Computational Visual Media, 2020, 6(2):113-133. DOI:10.1007/s41095-020-0174-8. [28] Yuan Y J, Lai Y K, Wu T, Gao L, Liu L. A revisit of shape editing techniques:From the geometric to the neural viewpoint. arXiv:2103.01694, 2021. https://arxiv.org/abs/2103.01694, Jan. 2021. [29] Wang P S, Liu Y, Guo Y X, Sun C Y, Tong X. O-CNN:Octree-based convolutional neural networks for 3D shape analysis. ACM Transactions on Graphics, 2017, 36(4):Article No. 72. DOI:10.1145/3072959.3073608. [30] Su H, Maji S, Kalogerakis E, Learned-Miller E G. Multiview convolutional neural networks for 3D shape recognition. In Proc. the 2015 IEEE International Conference on Computer Vision, Dec. 2015, pp.945-953. DOI:10.1109/ICCV.2015.114. [31] Sinha A, Bai J, Ramani K. Deep learning 3D shape surfaces using geometry images. In Proc. the 14th European Conference on Computer Vision, October 2016, pp.223-240. DOI:10.1007/978-3-319-46466-4_14. [32] Tan Q, Gao L, Lai Y, Yang J, Xia S. Mesh-based autoencoders for localized deformation component analysis. In Proc. the 32nd Conference on Artificial Intelligence, Feb. 2018, pp.2452-2459. [33] Tan Q, Gao L, Lai Y, Yang J, Xia S. Variational autoencoders for deforming 3D mesh models. In Proc. the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2018, pp.5841-5850. DOI:10.1109/CVPR.2018.00612. [34] Gao L, Lai Y K, Liang D, Chen S Y, Xia S. Efficient and flexible deformation representation for data-driven surface modeling. ACM Transactions on Graphics, 2016, 35(5):Article No. 158. DOI:10.1145/2908736. [35] Gao L, Lai Y K, Yang J, Zhang L X, Xia S, Kobbelt L. Sparse data driven mesh deformation. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(3):2085-2100. DOI:10.1109/TVCG.2019.2941200. [36] Zhang M, Wang T, Ceylan D, Mitra N J. Deep detail enhancement for any garment. arXiv:2008.04367, 2020. https://arxiv.org/abs/2008.04367v1, Jan. 2021. [37] Dong C, Loy C C, He K, Tang X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307. DOI:10.1109/TPAMI.2015.2439281. [38] Liu S, Gang R, Li C, Song R. Adaptive deep residual network for single image super-resolution. Computational Visual Media, 2019, 5(4):391-401. DOI:10.1007/s41095-019-0158-8. [39] Yue H J, Shen S, Yang J Y, Hu H F, Chen Y F. Reference image guided super-resolution via progressive channel attention networks. Journal of Computer Science and Technology, 2020, 35(3):551-563. DOI:10.1007/s11390-020-0270-3. [40] Dong C, Loy C C, Tang X. Accelerating the super-resolution convolutional neural network. In Proc. the 14th European Conference on Computer Vision, October 2016, pp.391-407. DOI:10.1007/978-3-319-46475-6_25. [41] Shi W, Caballero J, Huszár F, Totz J, Aitken A P, Bishop R, Rueckert D, Wang Z. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proc. the 2016 IEEE Conference on Computer Vision and Pattern Recognition, June 2016, pp.1874-1883. DOI:10.1109/CVPR.2016.207. [42] Haris M, Shakhnarovich G, Ukita N. Deep back projection networks for super-resolution. In Proc. the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2018, pp.1664-1673. DOI:10.1109/CVPR.2018.00179. [43] Kappeler A, Yoo S, Dai Q, Katsaggelos A K. Video superresolution with convolutional neural networks. IEEE Transactions on Computational Imaging, 2016, 2(2):109-122. DOI:10.1109/TCI.2016.2532323. [44] Chu M, Xie Y, Leal-Taixé L, Thuerey N. Learning temporal coherence via self-supervision for GAN-based video generation. ACM Trans. Graph., 2020, 39(4):Article No. 75. DOI:10.1145/3386569.3392457. [45] Bhattacharjee P, Das S. Directional attention based video frame prediction using graph convolutional networks. In Proc. the 2019 International Joint Conference on Neural Networks, July 2019, pp.4268-4277. DOI:10.1109/IJCNN.2019.8852090. [46] Xie Y, Franz E, Chu M, Thuerey N. TempoGAN:A temporally coherent, volumetric GAN for super-resolution fluid flow. ACM Transactions on Graphics, 2018, 37(4):Article No. 95. DOI:10.1145/3197517.3201304. [47] Kabsch W. A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A:Foundations and Advances, 1978, 34(5):827-828. DOI:10.1107/S0567739478001680. [48] Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In Proc. the 13th International Conference on Artificial Intelligence and Statistics, May 2010, pp.249-256. [49] Bergou M, Mathur S, Wardetzky M, Grinspun E. TRACKS:Toward directable thin shells. ACM Trans. Graph., 2007, 26(3):Article No. 50. DOI:10.1145/1276377.1276439. [50] Müller M, Gross M. Interactive virtual materials. In Proc. the 2004 Graphics Interface Conference, May 2004, pp.239-246. [51] Caruana R. Multitask learning. Machine Learning, 1997, 28(1):41-75. DOI:10.1023/A:1007379606734. [52] Burden R, Faires J. Numerical Analysis (9th Edition). Cengage Learning, 2010. [53] Ye J, Ma G, Jiang L, Chen L, Li J, Xiong G, Zhang X, Tang M. A unified cloth untangling framework through discrete collision detection. Computer Graphics Forum, 2017, 36(7):217-228. DOI:10.1111/cgf.13287. [54] Wang H, O'Brien J F, Ramamoorthi R. Data-driven elastic models for cloth:Modeling and measurement. ACM Trans. Graph., 2011, 30(4):Article No. 71. DOI:10.1145/2010324.1964966. [55] Kingma D P, Ba J. Adam:A method for stochastic optimization. In Proc. the 3rd International Conference on Learning Representations, May 2015. |
[1] | Xin Zhang, Siyuan Lu, Shui-Hua Wang, Xiang Yu, Su-Jing Wang, Lun Yao, Yi Pan, and Yu-Dong Zhang. Diagnosis of COVID-19 Pneumonia via a Novel Deep Learning Architecture [J]. Journal of Computer Science and Technology, 2022, 37(2): 330-343. |
[2] | Songjie Niu, Shimin Chen. TransGPerf: Exploiting Transfer Learning for Modeling Distributed Graph Computation Performance [J]. Journal of Computer Science and Technology, 2021, 36(4): 778-791. |
[3] | Sheng-Luan Hou, Xi-Kun Huang, Chao-Qun Fei, Shu-Han Zhang, Yang-Yang Li, Qi-Lin Sun, Chuan-Qing Wang. A Survey of Text Summarization Approaches Based on Deep Learning [J]. Journal of Computer Science and Technology, 2021, 36(3): 633-663. |
[4] | Yu-Jie Yuan, Yukun Lai, Tong Wu, Lin Gao, Li-Gang Liu. A Revisit of Shape Editing Techniques: From the Geometric to the Neural Viewpoint [J]. Journal of Computer Science and Technology, 2021, 36(3): 520-554. |
[5] | Wei Du, Yu Sun, Hui-Min Bao, Liang Chen, Ying Li, Yan-Chun Liang. DeepHBSP: A Deep Learning Framework for Predicting Human Blood-Secretory Proteins Using Transfer Learning [J]. Journal of Computer Science and Technology, 2021, 36(2): 234-247. |
[6] | Jun Gao, Paul Liu, Guang-Di Liu, Le Zhang. Robust Needle Localization and Enhancement Algorithm for Ultrasound by Deep Learning and Beam Steering Methods [J]. Journal of Computer Science and Technology, 2021, 36(2): 334-346. |
[7] | Hua Chen, Juan Liu, Qing-Man Wen, Zhi-Qun Zuo, Jia-Sheng Liu, Jing Feng, Bao-Chuan Pang, Di Xiao. CytoBrain: Cervical Cancer Screening System Based on Deep Learning Technology [J]. Journal of Computer Science and Technology, 2021, 36(2): 347-360. |
[8] | Nuo Qun, Hang Yan, Xi-Peng Qiu, Xuan-Jing Huang. Chinese Word Segmentation via BiLSTM+Semi-CRF with Relay Node [J]. Journal of Computer Science and Technology, 2020, 35(5): 1115-1126. |
[9] | Andrea Caroppo, Alessandro Leone, Pietro Siciliano. Comparison Between Deep Learning Models and Traditional Machine Learning Approaches for Facial Expression Recognition in Ageing Adults [J]. Journal of Computer Science and Technology, 2020, 35(5): 1127-1146. |
[10] | Chuang-Ye Zhang, Yan Niu, Tie-Ru Wu, Xi-Ming Li. Color Image Super-Resolution and Enhancement with Inter-Channel Details at Trivial Cost [J]. Journal of Computer Science and Technology, 2020, 35(4): 889-899. |
[11] | Dun Liang, Yuan-Chen Guo, Shao-Kui Zhang, Tai-Jiang Mu, Xiaolei Huang. Lane Detection: A Survey with New Results [J]. Journal of Computer Science and Technology, 2020, 35(3): 493-505. |
[12] | Zheng Zeng, Lu Wang, Bei-Bei Wang, Chun-Meng Kang, Yan-Ning Xu. Denoising Stochastic Progressive Photon Mapping Renderings Using a Multi-Residual Network [J]. Journal of Computer Science and Technology, 2020, 35(3): 506-521. |
[13] | Shuai Li, Zheng Fang, Wen-Feng Song, Ai-Min Hao, Hong Qin. Bidirectional Optimization Coupled Lightweight Networks for Efficient and Robust Multi-Person 2D Pose Estimation [J]. Journal of Computer Science and Technology, 2019, 34(3): 522-536. |
[14] | Na Ding, Ye-Peng Liu, Lin-Wei Fan, Cai-Ming Zhang. Single Image Super-Resolution via Dynamic Lightweight Database with Local-Feature Based Interpolation [J]. Journal of Computer Science and Technology, 2019, 34(3): 537-549. |
[15] | Jin-Hua Tao, Zi-Dong Du, Qi Guo, Hui-Ying Lan, Lei Zhang, Sheng-Yuan Zhou, Ling-Jie Xu, Cong Liu, Hai-Feng Liu, Shan Tang, Allen Rush, Willian Chen, Shao-Li Liu, Yun-Ji Chen, Tian-Shi Chen. BENCHIP: Benchmarking Intelligence Processors [J]. , 2018, 33(1): 1-23. |
|
|