|
Journal of Computer Science and Technology ›› 2021, Vol. 36 ›› Issue (4): 741-761.doi: 10.1007/s11390-021-1350-8
Special Issue: Data Management and Data Mining
• Special Section on AI4DB and DB4AI • Previous Articles Next Articles
Jia-Ke Ge1,2, Yan-Feng Chai2,3, and Yun-Peng Chai1,2,*, Member, CCF
[1] O'Neil P, Cheng E, Gawlick D, O'Neil E. The log-structured merge-tree (LSM-tree). Acta Informatica, 1996, 33(4):351-385. DOI:10.1007/s002360050048. [2] Dong S Y, Callaghan M, Galanis L, Borthakur D, Savor T, Stumm M. Optimizing space amplification in RocksDB. In Proc. the 8th Biennial Conference on Innovative Data Systems Research, Jan. 2017. [3] Chai Y P, Chai Y F, Wang X, Wei H C, Bao N, Liang Y S. LDC:A lower-level driven compaction method to optimize SSD-oriented key-value stores. In Proc. the 35th IEEE International Conference on Data Engineering, April 2019, pp.722-733. DOI:10.1109/ICDE.2019.00070. [4] Chai Y P, Chai Y F, Wang X, Wei H C, Wang Y Y. Adaptive lower-level driven compaction to optimize LSM-Tree key-value stores. IEEE Transactions on Knowledge Data Engineering. DOI:10.1109/TKDE.2020.3019264. [5] Zhu Y Q, Liu J X, Guo M Y, Bao Y G, Ma W L, Liu Z Y, Song K P, Yang Y C. BestConfig:Tapping the performance potential of systems via automatic configuration tuning. In Proc. ACM Symposium on Cloud Computing, Sept. 2017, pp.338-350. DOI:10.1145/3127479.3128605. [6] Van Aken D, Pavlo A, Gordon G J, Zhang B H. Automatic database management system tuning through large-scale machine learning. In Proc. the 2017 ACM International Conference on Management of Data, May 2017, pp.1009-1024. DOI:10.1145/3035918.3064029. [7] Zhang J, Liu L, Ran M, Li Z K, Liu Y, Zhou K, Li G L, Xiao Z L, Cheng B, Xing J S, Wang Y T, Cheng T H. An end-to-end automatic cloud database tuning system using deep reinforcement learning. In Proc. the 2019 International Conference on Management of Data, June 2019, pp.415-432. DOI:10.1145/3299869.3300085. [8] Li G L, Zhou X H, Li S F, Gao B. QTune:A query-aware database tuning system with deep reinforcement learning. Proc. the VLDB Endowment, 2019, 12(12):2118-2130. DOI:10.14778/3352063.3352129. [9] Lillicrap T P, Hunt J J, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D. Continuous control with deep reinforcement learning. arXiv:1509.02971, 2015. https://arxiv.org/abs/1509.02971, Jun. 2021. [10] Van Hasselt H. Double Q-learning. In Proc. the 24th Annual Conference on Neural Information Processing Systems, Dec. 2010, pp.2613-2621. [11] Kingma D, Ba J. Adam:A method for stochastic optimization. In Proc. the 3rd International Conference on Learning Representations, May 2015. [12] Munos R, Moore A. Variable resolution discretization in optimal control. Machine Learning, 2002, 49(2/3):291-323. DOI:10.1023/A:1017992615625. [13] Mnih V, Kavukcuoglu K, Silver D et al. Human-level control through deep reinforcement learning. Nature, 2015, 518(7540):529-533. DOI:10.1038/nature14236. [14] Ban T W. An autonomous transmission scheme using dueling DQN for D2D communication networks. IEEE Transactions on Vehicular Technology, 2020, 69(12):16348-16352. DOI:10.1109/TVT.2020.3041458. [15] Chen L, Hu X M, Tang B, Cheng Y. Conditional DQNbased motion planning with fuzzy logic for autonomous driving. IEEE Transactions on Intelligent Transportation Systems. DOI:10.1109/TITS.2020.3025671. [16] Huang H J, Yang Y C, Wang H, Ding Z G, Sari H, Adachi F. Deep reinforcement learning for UAV navigation through massive MIMO technique. IEEE Transactions on Vehicular Technology, 2020, 69(1):1117-1121. DOI:10.1109/TVT.2019.2952549. [17] Li J X, Yao L, Xu X, Cheng B, Ren J K. Deep reinforcement learning for pedestrian collision avoidance and humanmachine cooperative driving. Information Sciences, 2020, 532:110-124. DOI:10.1016/j.ins.2020.03.105. [18] Yoo H, Kim B, Kim J W, Lee J H. Reinforcement learning based optimal control of batch processes using Monte-Carlo deep deterministic policy gradient with phase segmentation. Computers & Chemical Engineering, 2021, 144:Article No. 107133. DOI:10.1016/j.compchemeng.2020.107133. [19] He X M, Lu H D, Du M, Mao Y C, Wang K. QoE-based task offloading with deep reinforcement learning in edgeenabled Internet of vehicles. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(4):2252-2261. DOI:10.1109/TITS.2020.3016002. [20] Li L Y, Xu H, Ma J, Zhou A Z. Joint EH time and transmit power optimization based on DDPG for EH communications. IEEE Communications Letters, 2020, 24(9):2043-2046. DOI:10.1109/LCOMM.2020.2999914. [21] Nguyen D Q, Vien N A, Dang V H, Chung T. Asynchronous framework with Reptile+ algorithm to meta learn partially observable Markov decision process. Applied Intelligence, 2020, 50(11):4050-4062. DOI:10.1007/s10489-020-01748-7. [22] Gheisarnejad M, Khooban M H. IoT-based DC/DC deep learning power converter control:Real-time implementation. IEEE Transactions on Power Electronics, 2020, 35(12):13621-13630. DOI:10.1109/TPEL.2020.2993635. [23] Tang Z T, Shao K, Zhao D B, Zhu Y H. Recent progress of deep reinforcement learning:From AlphaGo to AlphaGo Zero. Control Theory & Applications, 2017, 34(12):1529-1546. DOI:10.7641/CTA.2017.70808. (in Chinese) [24] Silver D, Schrittwieser J, Simonyan K et al. Mastering the game of Go without human knowledge. Nature, 2017, 550(7676):354-359. DOI:10.1038/nature24270. [25] Ye D H, Chen G B, Zhang W et al. Towards playing full MOBA games with deep reinforcement learning. arXiv:2011.12692, 2020. https://arxiv.org/abs/2011.12692, Dec. 2020. [26] Li G L. Human-in-the-loop data integration. Proceedings of the VLDB Endowment, 2017, 10(12):2006-2017. DOI:10.14778/3137765.3137833. [27] Li G L, Zhou X H, Li S H. XuanYuan:An AI-native database. IEEE Data Engineering Bulletin, 2019, 42(2):70-81. [28] Basu D, Lin Q, Chen W, Vo H T, Yuan Z, Senellart P, Bressan S. Regularized cost-model oblivious database tuning with reinforcement learning. In Transactions on LargeScale Data- and Knowledge-Centered Systems XXVⅢ, Hameurlain A, Küng J, Wagner R, Chen Q (eds.), Springer, 2016, pp.96-132. DOI:10.1007/978-3-662-53455-75. [29] Sun J, Li G L. An end-to-end learning-based cost estimator. Proceedings of the VLDB Endowment, 2019, 13(3):307-319. DOI:10.14778/3368289.3368296. [30] Kraska T, Alizadeh M, Beutel A et al. SageDB:A learned database system. In Proc. the 9th Biennial Conference on Innovative Data Systems Research, Jan. 2019. [31] Duan S Y, Thummala V, Babu S. Tuning database configuration parameters with iTuned. Proceedings of the VLDB Endowment, 2009, 2(1):1246-1257. DOI:10.14778/1687-627.1687767. [32] Wei Z J, Ding Z H, Hu J L. Self-tuning performance of database systems based on fuzzy rules. In Proc. the 11th International Conference on Fuzzy Systems and Knowledge Discovery, Aug. 2014, pp.194-198. DOI:10.1109/FSKD.2014.6980831. [33] Zheng C H, Ding Z H, Hu J L. Self-tuning performance of database systems with neural network. In Proc. the 10th International Conference on Natural Computation, Aug. 2014, pp.1-12. DOI:10.1007/978-3-319-09333-8_1. |
[1] | Chen-Chen Sun, De-Rong Shen. Mixed Hierarchical Networks for Deep Entity Matching [J]. Journal of Computer Science and Technology, 2021, 36(4): 822-838. |
[2] | Yang Liu, Ruili He, Xiaoqian Lv, Wei Wang, Xin Sun, Shengping Zhang. Is It Easy to Recognize Baby's Age and Gender? [J]. Journal of Computer Science and Technology, 2021, 36(3): 508-519. |
[3] | Yi-Ting Wang, Jie Shen, Zhi-Xu Li, Qiang Yang, An Liu, Peng-Peng Zhao, Jia-Jie Xu, Lei Zhao, Xun-Jie Yang. Enriching Context Information for Entity Linking with Web Data [J]. Journal of Computer Science and Technology, 2020, 35(4): 724-738. |
[4] | Ying Li, Jia-Jie Xu, Peng-Peng Zhao, Jun-Hua Fang, Wei Chen, Lei Zhao. ATLRec: An Attentional Adversarial Transfer Learning Network for Cross-Domain Recommendation [J]. Journal of Computer Science and Technology, 2020, 35(4): 794-808. |
[5] | Chun-Yang Ruan, Ye Wang, Jiangang Ma, Yanchun Zhang, Xin-Tian Chen. Adversarial Heterogeneous Network Embedding with Metapath Attention Mechanism [J]. Journal of Computer Science and Technology, 2019, 34(6): 1217-1229. |
|