|
Journal of Computer Science and Technology ›› 2021, Vol. 36 ›› Issue (4): 762-777.doi: 10.1007/s11390-021-1351-7
Special Issue: Data Management and Data Mining
• Special Section on AI4DB and DB4AI • Previous Articles Next Articles
Shao-Jie Qiao1, Senior Member, CCF, Guo-Ping Yang1, Nan Han2,*, Hao Chen3, Fa-Liang Huang4, Member, CCF, Kun Yue5, Member, CCF, Yu-Gen Yi6, Member, CCF, IEEE, and Chang-An Yuan7, Member, CCF
[1] Leis V, Radke B, Gubichev A, Kemper A, Neumann T. Cardinality estimation done right:Index-based join sampling. In Proc. the 8th Biennial Conference on Innovative Data Systems Research, Jan. 2017. [2] Li G, Zhou X, Li S. XuanYuan:An AI-native database. IEEE Data Eng. Bull., 2019, 42(2):70-81. [3] Kipf A, Kipf T, Radke B, Leis V, Boncz P A, Kemper A. Learned cardinalities:Estimating correlated joins with deep learning. In Proc. the 9th Biennial Conference on Innovative Data Systems Research, Jan. 2019. [4] Ioannidis Y E. The history of histograms (abridged). In Proc. the 29th International Conference on Very Large Data Bases, Sept. 2003, pp.19-30. DOI:10.1016/B978-012722442-8/50011-2. [5] Giroire F. Order statistics and estimating cardinalities of massive data sets. Discret. Appl. Math., 2009, 157(2):406-427. DOI:10.1016/j.dam.2008.06.020. [6] Flajolet P, Martin G N. Probabilistic counting algorithms for data base applications. J. Comput. Syst. Sci., 1985, 31(2):182-209. DOI:10.1016/0022-0000(85)90041-8. [7] Durand M, Flajolet P. Loglog counting of large cardinalities. In Proc. the 11th Annual European Symposium, Sept. 2003, pp.605-617. DOI:10.1007/978-3-540-39658-155. [8] Flajolet P, Fusy É, Gandouet O, Meunier F. HyperLogLog: The analysis of a near-optimal cardinality estimation algorithm. In Proc. the 2007 Conference on Analysis of Algorithm, Jun. 2007, pp.137-156. [9] Whang K, Zanden B T V, Taylor H M. A linear-time probabilistic counting algorithm for database applications. ACM Trans. Database Syst., 1990, 15(2):208-229. DOI:10.1145/78922.78925. [10] Wu W, Naughton J F, Singh H. Sampling-based query reoptimization. In Proc. the 2016 International Conference on Management of Data, June 26-July 1, 2016, pp.1721-1736. DOI:10.1145/2882903.2882914. [11] Lipton R J, Naughton J F, Schneider D A. Practical selectivity estimation through adaptive sampling. In Proc. the 1990 ACM SIGMOD International Conference on Management of Data, May 1990, pp.1-11. DOI:10.1145/936-05.93611. [12] Olken F, Rotem D. Random sampling from database files:A survey. In Proc. the 5th International Conference on Statistical and Scientific Database Management, Apr. 1990, pp.92-111. DOI:10.1007/3-540-52342-123. [13] Estan C, Naughton J F. End-biased samples for join cardinality estimation. In Proc. the 22nd International Conference on Data Engineering, Apr. 2006, Article No. 20. DOI:10.1109/ICDE.2006.61. [14] Neumann T, Leis V, Kemper A. The complete story of joins (in hyper). In Proc. the Datenbanksysteme für Business, Technologie und Web, Mar. 2017, pp.31-50. [15] Neumann T, Radke B. Adaptive optimization of very large join queries. In Proc. the 2018 International Conference on Management of Data, Jun. 2018, pp.677-692. DOI:10.1145/3183713.3183733. [16] Zhang W E, Sheng Q Z, Qin Y, Taylor K, Yao L. Learningbased SPARQL query performance modeling and prediction. World Wide Web, 2018, 21(4):1015-1035. DOI:10.1007/s11280-017-0498-1. [17] Leis V, Gubichev A, Mirchev A, Boncz P A, Kemper A, Neumann T. How good are query optimizers, really? Proc. VLDB Endow., 2015, 9(3):204-215. DOI:10.14778/28505-83.2850594. [18] Lakshmi M S, Zhou S. Selectivity estimation in extensible databases-A neural network approach. In Proc. the 24th International Conference on Very Large Data Bases, Aug. 1998, pp.623-627. [19] Malik T, Burns R C, Chawla N V. A black-box approach to query cardinality estimation. In Proc. the 3rd Biennial Conference on Innovative Data Systems Research, Jan. 2007, pp.56-67. [20] Yang Z, Liang E, Kamsetty A, Wu C, Duan Y, Chen X, Abbeel P, Hellerstein J M, Krishnan S, Stoica I. Selectivity estimation with deep likelihood models. arXiv:1905.04278, 2019. http://arxiv.org/abs/1905.04278, Aug. 2020. [21] Liu H, Xu M, Yu Z, Corvinelli V, Zuzarte C. Cardinality estimation using neural networks. In Proc. the 25th Annual International Conference on Computer Science and Software Engineering, Nov. 2015, pp.53-59. [22] Knagenhjelm P, Brauer P. Classification of vowels in continuous speech using MLP and a hybrid net. Speech Commun., 1990, 9(1):31-34. DOI:10.1016/0167-6393(90)90042-8. [23] Mahmoud M A B, Guo P. DNA sequence classification based on MLP with PILAE algorithm. Soft Comput., 2021, 25(5):4003-4014. DOI:10.1007/s00500-020-05429-y. [24] Sun J, Li G. An end-to-end learning-based cost estimator. Proc. VLDB Endow., 2019, 13(3):307-319. DOI:10.14778/3368289.3368296. [25] Yu X, Li G, Chai C, Tang N. Reinforcement learning with tree-LSTM for join order selection. In Proc. the 36th IEEE International Conference on Data Engineering, Apr. 2020, pp.1297-1308. DOI:10.1109/ICDE48307.2020.00116. [26] Zhang J, Liu Y, Zhou K, Li G, Xiao Z, Cheng B, Xing J, Wang Y, Cheng T, Liu L, Ran M, Li Z. An end-to-end automatic cloud database tuning system using deep reinforcement learning. In Proc. the 2019 International Conference on Management of Data, Jun. 2019, pp.415-432. DOI:10.1145/3299869.3300085. [27] Li G, Zhou X, Li S, Gao B. QTune:A query-aware database tuning system with deep reinforcement learning. Proc. VLDB Endow., 2019, 12(12):2118-2130. DOI:10.14778/3352063.3352129. [28] Li G, Chai C, Fan J, Weng X, Li J, Zheng Y, Li Y, Yu X, Zhang X, Yuan H. CDB:Optimizing queries with crowdbased selections and joins. In Proc. the 2017 ACM International Conference on Management of Data, May 2017, pp.1463-1478. DOI:10.1145/3035918.3064036. [29] Fan J, Li G, Zhou L. Interactive SQL query suggestion:Making databases user-friendly. In Proc. the 27th International Conference on Data Engineering, Apr. 2011, pp.351-362. DOI:10.1109/ICDE.2011.5767843. [30] Mikolov T, Sutskever I, Chen K, Corrado G S, Dean J. Distributed representations of words and phrases and their compositionality. In Proc. the 27th International Conference on Neural Information Processing Systems, Dec. 2013, pp.3111-3119. [31] Zimmer R, Pellegrini T, Singh S F, Masquelier T. Supervised training of convolutional spiking neural networks with PyTorch. arXiv:1911.10124, 2019. https://arxiv.org/abs/1911.10124, Nov. 2020. [32] Al-Mouhamed M A, Hasan Khan A, Mohammad N. A review of CUDA optimization techniques and tools for structured grid computing. Computing, 2020, 102(4):977-1003. DOI:10.1007/s00607-019-00744-1. [33] Liu B, Liang Y. Optimal function approximation with ReLU neural networks. Neurocomputing, 2021, 435:216-227. DOI:10.1016/j.neucom.2021.01.007. [34] Hinton G E, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580, 2012. https://arxiv.org/abs/1207.0580, May 2021. [35] Kingma D P, Ba J. Adam:A method for stochastic optimization. In Proc. the 3rd International Conference on Learning Representations, May 2015. [36] Moerkotte G, Neumann T, Steidl G. Preventing bad plans by bounding the impact of cardinality estimation errors. Proc. VLDB Endow., 2009, 2(1):982-993. DOI:10.14778/1687627.1687738. |
No related articles found! |
|