|
Journal of Computer Science and Technology ›› 2022, Vol. 37 ›› Issue (1): 231-251.doi: 10.1007/s11390-021-1754-5
Special Issue: Data Management and Data Mining
• Regular Paper • Previous Articles Next Articles
Jian-Zhe Zhao1 (赵建喆), Xing-Wei Wang2,3,* (王兴伟), Senior Member, CCF, Ke-Ming Mao1 (毛克明), Chen-Xi Huang1 (黄辰希), Yu-Kai Su1 (苏昱恺), and Yu-Chen Li1 (李宇宸)
[1] Shanthamallu U S, Spanias A, Tepedelenlioglu C, Stanley M. A brief survey of machine learning methods and their sensor and IoT applications. In Proc. the 8th Int. Conf. Information, Intelligence, Systems & Applications, Aug. 2017. DOI: 10.1109/IISA.2017.8316459. [2] Mohammed N, Fung B C M, Debbabi M. Anonymity meets game theory: Secure data integration with malicious participants. The VLDB Journal, 2011, 20(4): 567-588. DOI: 10.1007/s00778-010-0214-6. [3] Fung B C M, Wang K, Chen R, Yu P S. Privacy-preserving data publishing: A survey of recent developments. ACM Computing Surveys, 2010, 42(4): Article No.14. DOI: 10.1145/1749603.1749605. [4] Kim H, Ben-Othman J, Mokdad L. UDiPP: A framework for differential privacy preserving movements of unmanned aerial vehicles in smart cities. IEEE Trans. Veh. Technol., 2019, 68(4): 3933-3943. DOI: 10.1109/TVT.2019.2897509. [5] Du M, Wang K, Xia Z, Zhang Y. Differential privacy preserving of training model in wireless big data with edge computing. IEEE Trans. Big Data, 2020, 6(2): 283-295. DOI: 10.1109/TBDATA.2018.2829886. [6] Kim S, Shin H, Baek C H, Kim S, Shin J. Learning new words from keystroke data with local differential privacy. IEEE Trans. Knowl. Data Eng., 2020, 32(3): 479-491. DOI: 10.1109/TKDE.2018.2885749. [7] Li D, Yang Q, Yu W, An D, Zhang Y, Zhao W. Towards differential privacy-based online double auction for smart grid. IEEE Trans. Inf. Forensics Secur., 2020, 15: 971-986. DOI: 10.1109/TIFS.2019.2932911. [8] Dwork C. Differential privacy. In Proc. the 33rd International Colloquium on Automata, Languages and Programming, July 2006, pp.1-12. DOI: 10.1007/11787006-1. [9] Dwork C, McSherry F, Nissim K, Smith A D. Calibrating noise to sensitivity in private data analysis. In Proc. the 3rd Theory of Cryptography Conference, March 2006, pp.265-284. DOI: 10.1007/11681878-14. [10] Ji Z, Lipton Z C, Elkan C. Differential privacy and machine learning: A survey and review. arXiv:1412.7584, 2014. https://arxiv.org/abs/1412.7584, May 2020. [11] Mir D J. Differentially-private learning and information theory. In Proc. the 2012 EDBT/ICDT Workshops, March 2012, pp.206-210. DOI: 10.1145/2320765.2320823. [12] Friedman A, Schuster A. Data mining with differential privacy. In Proc. the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, July 2010, pp.493-502. DOI: 10.1145/1835804.1835868. [13] Mohammed N, Chen R, Fung B C M, Yu P S. Differentially private data release for data mining. In Proc. the17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2011, pp.493-501. DOI: 10.1145/2020408.2020487. [14] Vaidya J, Shafiq B, Basu A, Hong Y. Differentially private naive Bayes classification. In Proc. the 2013 IEEE/WIC/ACM International Conferences on Web Intelligence, November 2013, pp.571-576. DOI: 10.1109/WI-IAT.2013.80. [15] Chaudhuri K, Monteleoni C. Privacy-preserving logistic regression. In Proc. the 22nd Annual Conference on Neural Information Processing Systems, December 2008, pp.289-296. [16] Lei J. Differentially private M-estimators. In Proc. the 25th Annual Conference on Neural Information Processing Systems, December 2011, pp.361-369. [17] Zhang J, Zhang Z, Xiao X, Yang Y, Winslett M. Functional mechanism: Regression analysis under differential privacy. Proceedings of the VLDB Endowment, 2012, 15(11): 1364-1375. DOI: 10.14778/2350229.2350253. [18] Rubinstein B I P, Bartlett P L, Huang L, Taft N. Learning in a large function space: Privacy-preserving mechanisms for SVM learning. arXiv:0911.5708, 2009. https://arxiv.org/abs/0911.5708, May 2020. [19] Chaudhuri K, Monteleoni C, Sarwate A D. Differentially private empirical risk minimization. Machine Learning Research, 2011, 12: 1069-1109. [20] Song S, Chaudhuri K, Sarwate A D. Stochastic gradient descent with differentially private updates. In Proc. the 2013 IEEE Global Conf. Signal Inf. Process., December 2013, pp.245-248. DOI: 10.1109/GlobalSIP.2013.6736861. [21] Abadi M, Chu A, Goodfellow I J, McMahan H B, Mironov I, Talwar K, Zhang L. Deep learning with differential privacy. In Proc. the 2016 ACMSIGSAC Conf. Comput. Commun. Secur., October 2016, pp.308-318. DOI: 10.1145/2976749.2978318. [22] Xiao Y, Xiong L. Protecting locations with differential privacy under temporal correlations. In Proc. the 22nd ACM Conference on Computer and Communications Security, October 2015, pp.1298-1309. DOI: 10.1145/2810103.2813640. [23] Lv D, Zhu S. Achieving correlated differential privacy of big data publication. Computers & Security, 2019, 82: 184-195. DOI: 10.1016/j.cose.2018.12.017. [24] Kifer D, Machanavajjhala A. No free lunch in data privacy. In Proc. the 2011 ACM SIGMOD International Conference on Management of Data, June 2011, pp.193-204. DOI: 10.1145/1989323.1989345. [25] He X, Machanavajjhala A, Ding B. Blowfish privacy: Tuning privacy-utility trade-offs using policies. In Proc. the 2014 ACM SIGMOD International Conference on Management of Data, June 2014, pp.1447-1458. DOI: 10.1145/2588555.2588581. [26] Kifer D, Machanavajjhala A. Pufferfish: A framework for mathematical privacy definitions. ACM Trans. Database Syst., 2014, 39(1): Article No.3. DOI: 10.1145/2514689. [27] Chen R, Fung B C M, Yu P S, Desai B C. Correlated network data publication via differential privacy. The VLDB Journal, 2014, 23(4): 653-676. DOI: 10.1007/s00778-013-0344-8. [28] Zhu T, Xiong P, Li G, Zhou W. Correlated differential privacy: Hiding information in Non-IID data set. IEEE Trans. Info. Fore. and Secur., 2015, 10(2): 229-242. DOI: 10.1109/TIFS.2014.2368363. [29] Yang B, Sato I, Nakagawa H. Bayesian differential privacy on correlated data. In Proc. the 2015 ACM SIGMOD International Conference on Management of Data, May 31-June 4, 2015, pp.747-762. DOI: 10.1145/2723372.2747643. [30] Alhadidi D, Mohammed N, Fung B C M, Debbabi M. Secure distributed framework for achieving $\epsilon$-differential privacy. In Proc. the 12th International Symposium on Privacy Enhancing Technologies, July 2012, pp.120-139. DOI: 10.1007/978-3-642-31680-7-7. [31] Hong Y, Vaidya J, Lu H, Karras P, Goel S. Collaborative search log sanitization: Toward differential privacy and boosted utility. IEEE Trans. Dependable Secur. Comput., 2015, 12(5): 504-518. DOI: 10.1109/TDSC.2014.2369034. [32] Mohammed N, Alhadidi D, Fung B C M, Debbabi M. Secure two-party differentially private data release for vertically partitioned data. IEEE Trans. Dependable Secur. Comput., 2014, 11(1): 59-71. DOI: 10.1109/TDSC.2013.22. [33] Cheng X, Tang P, Su S, Chen R, Wu Z, Zhu B. Multi-party high-dimensional data publishing under differential privacy. IEEE Trans. Knowl. Data Eng., 2020, 32(8): 1557-1571. DOI: 10.1109/TKDE.2019.2906610. [34] Goryczka S, Xiong L. A comprehensive comparison of multiparty secure additions with differential privacy. IEEE Transactions on Dependable and Secure Computing, 2017, 14(5): 463-477. DOI: 10.1109/TDSC.2015.2484326. [35] Dangi D, Santhi G. Secured multi-party data release on cloud for big data privacy-preserving using fusion learning. Turkish Journal of Computer and Mathematics Education, 2021, 12(3): 4716-4725. DOI: 10.17762/turcomat.v12i3.1893. [36] Zhu T, Xiong P, Li G, Zhou W. Answering differentially private queries for continual datasets release. Future Gener. Comput. Syst., 2018, 87: 816-827. DOI: 10.1016/j.future.2017.05.007. [37] Chen J, Ma H, Zhao D, Liu L. Correlated differential privacy protection for mobile crowdsensing. IEEE Trans. Big Data, 2021, 7(4): 784-795. DOI: 10.1109/TBDATA.2017.2777862. [38] Cao Y, Yoshikawa M, Xiao Y, Xiong L. Quantifying differential privacy in continuous data release under temporal correlations. IEEE Trans. Knowl. Data Eng., 2019, 31(7): 1281-1295. DOI: 10.1109/TKDE.2018.2824328. [39] Song S, Wang Y, Chaudhuri K. Pufferfish privacy mechanisms for correlated data. In Proc. the 2017 ACM International Conference on Management of Data, May 2017, pp.1291-1306. DOI: 10.1145/3035918.3064025. [40] Zhang T, Zhu T, Xiong P, Huo H, Tari Z, Zhou W. Correlated differential privacy: Feature selection in machine learning. IEEE Trans. Industrial Informatics, 2020, 16(3): 2115-2124. DOI: 10.1109/TII.2019.2936825. [41] Wang H, Wang H. Correlated tuple data release via differential privacy. Inf. Sci., 2021, 560: 347-369. DOI: 10.1016/j.ins.2021.01.058. [42] Wang H, Xu Z, Jia S, Xia Y, Zhang X. Why current differential privacy schemes are inapplicable for correlated data publishing? World Wide Web, 2021, 24(1): 1-23. DOI: 10.1007/s11280-020-00825-8. [43] Ou L, Qin Z, Liao S, Hong Y, Jia X. Releasing correlated trajectories: Towards high utility and optimal differential privacy. IEEE Trans. Dependable Secur. Comput., 2020, 17(5): 1109-1123. DOI: 10.1109/TDSC.2018.2853105. [44] Tang P, Chen R, Su S, Guo S, Ju L, Liu G. Differentially private publication of multi-party sequential data. In Proc. the 37th IEEE International Conference on Data Engineering, April 2021, pp.145-156, DOI: 10.1109/ICDE51399.2021.00020. [45] Wu X, Dou W, Ni Q. Game theory based privacy preserving analysis in correlated data publication. In Proc. the Australasian Computer Science Week Multiconference, January 31-February 3, 2017, Article No.73. DOI: 10.1145/3014812.3014887. [46] McSherry F, Talwar K. Mechanism design via differential privacy. In Proc. the 48th Annu. IEEE Symp. Found. Comput. Sci., October 2007, pp.94-103. DOI: 10.1109/FOCS.2007.66. [47] Chandrashekar G, Sahin F. A survey on feature selection methods. Comput. Elect. Eng., 2014, 40(1): 16-28. DOI: 10.1016/j.compeleceng.2013.11.024. |
[1] | Geun Yong Kim, Joon-Young Paik, Yeongcheol Kim, and Eun-Sun Cho. Byte Frequency Based Indicators for Crypto-Ransomware Detection from Empirical Analysis [J]. Journal of Computer Science and Technology, 2022, 37(2): 423-442. |
[2] | Yi Zhong, Jian-Hua Feng, Xiao-Xin Cui, Xiao-Le Cui. Machine Learning Aided Key-Guessing Attack Paradigm Against Logic Block Encryption [J]. Journal of Computer Science and Technology, 2021, 36(5): 1102-1117. |
[3] | Jian-Wei Cui, Wei Lu, Xin Zhao, Xiao-Yong Du. Efficient Model Store and Reuse in an OLML Database System [J]. Journal of Computer Science and Technology, 2021, 36(4): 792-805. |
[4] | Sara Elmidaoui, Laila Cheikhi, Ali Idri, Alain Abran. Machine Learning Techniques for Software Maintainability Prediction: Accuracy Analysis [J]. Journal of Computer Science and Technology, 2020, 35(5): 1147-1174. |
[5] | Andrea Caroppo, Alessandro Leone, Pietro Siciliano. Comparison Between Deep Learning Models and Traditional Machine Learning Approaches for Facial Expression Recognition in Ageing Adults [J]. Journal of Computer Science and Technology, 2020, 35(5): 1127-1146. |
[6] | Shu-Zheng Zhang, Zhen-Yu Zhao, Chao-Chao Feng, Lei Wang. A Machine Learning Framework with Feature Selection for Floorplan Acceleration in IC Physical Design [J]. Journal of Computer Science and Technology, 2020, 35(2): 468-474. |
[7] | Rui Ren, Jiechao Cheng, Xi-Wen He, Lei Wang, Jian-Feng Zhan, Wan-Ling Gao, Chun-Jie Luo. HybridTune: Spatio-Temporal Performance Data Correlation for Performance Diagnosis of Big Data Systems [J]. Journal of Computer Science and Technology, 2019, 34(6): 1167-1184. |
[8] | João Fabrício Filho, Luis Gustavo Araujo Rodriguez, Anderson Faustino da Silva. Yet Another Intelligent Code-Generating System: A Flexible and Low-Cost Solution [J]. Journal of Computer Science and Technology, 2018, 33(5): 940-965. |
[9] | Lan Yao, Feng Zeng, Dong-Hui Li, Zhi-Gang Chen. Sparse Support Vector Machine with Lp Penalty for Feature Selection [J]. , 2017, 32(1): 68-77. |
[10] | Xin-Qi Bao, Yun-Fang Wu. A Tensor Neural Network with Layerwise Pretraining: Towards Effective Answer Retrieval [J]. , 2016, 31(6): 1151-1160. |
[11] | Najam Nazar, Yan Hu, He Jiang. Summarizing Software Artifacts: A Literature Review [J]. , 2016, 31(5): 883-909. |
[12] | Xi-Jin Zhang, Yi-Fan Lu, Song-Hai Zhang. Multi-Task Learning for Food Identification and Analysis with Deep Convolutional Neural Networks [J]. , 2016, 31(3): 489-500. |
[13] | Lixue Xia, Peng Gu, Boxun Li, Tianqi Tang, Xiling Yin, Wenqin Huangfu, Shimeng Yu, Yu Cao, Yu Wang, Huazhong Yang. Technological Exploration of RRAM Crossbar Array for Matrix-Vector Multiplication [J]. , 2016, 31(1): 3-19. |
[14] | Jun-Fa Liu, Wen-Jing He, Tao Chen, and Yi-Qiang Chen. Manifold Constrained Transfer of Facial Geometric Knowledge for 3D Caricature Reconstruction [J]. , 2013, 28(3): 479-489. |
[15] | Yuan Jiang (姜远), Member, CCF, Ming Li (黎铭), Member, CCF, ACM, IEEE, and Zhi-Hua Zhou (周志华), Senior Member, CCF, IEEE, <. Software Defect Detection with ROCUS [J]. , 2011, 26(2): 328-342. |
|
|