|
Journal of Computer Science and Technology ›› 2023, Vol. 38 ›› Issue (2): 391-404.doi: 10.1007/s11390-022-1573-3
Special Issue: Computer Architecture and Systems; Artificial Intelligence and Pattern Recognition
• Computer Architecture and Systems • Previous Articles Next Articles
Hui-Jing Yang (杨会静), Student Member, CCF, Juan Fang* (方 娟), Senior Member, CCF, ACM, IEEE, Min Cai (蔡 旻), Member, CCF, and Zhi Cai (才 智), Member, ACM
[1]
Zangeneh S, Pruett S, Lym S, Patt Y N. BranchNet: A convolutional neural network to predict hard-to-predict branches. In Proc. the 53rd Annual IEEE/ACM International Symposium on Microarchitecture, Oct. 2020, pp.118–130. DOI: 10.1109/MICRO50266.2020.00022. [2] Teran E, Wang Z, Jiménez D A. Perceptron learning for reuse prediction. In Proc. the 49th Annual IEEE/ACM International Symposium on Microarchitecture, Oct. 2016. DOI: 10.1109/MICRO.2016.7783705. [3] Shi Z, Huang X R, Jain A, Lin C. Applying deep learning to the cache replacement problem. In Proc. the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, Oct. 2019, pp.413–425. DOI: 10.1145/3352460.3358319. [4] Ipek E, Mutlu O, Martínez J F, Caruana R. Self-optimizing memory controllers: A reinforcement learning approach. ACM SIGARCH Computer Architecture News, 2008, 36(3): 39–50. DOI: 10.1145/1394608.1382172. [5] Hallnor E G, Reinhardt S K. A fully associative software-managed cache design. In Proc. the 27th Annual International Symposium on Computer Architecture, Jun. 2000, pp.107–116. DOI: 10.1145/339647.339660. [6] Jaleel A, Theobald K B, Steely Jr S C, Emer J. High performance cache replacement using re-reference interval prediction (RRIP). ACM SIGARCH Computer Architecture News, 2010, 38(3): 60–71. DOI: 10.1145/1816038.1815971. [7] Wu C J, Jaleel A, Hasenplaugh W, Martonosi M. SHiP: Signature-based hit predictor for high performance caching. In Proc. the 44th Annual IEEE/ACM International Symposium on Microarchitecture, Dec. 2011, pp.430–441. DOI: 10.1145/2155620.2155671. [8] Jain A, Lin C. Back to the future: Leveraging Belady's algorithm for improved cache replacement. In Proc. the 43rd Annual International Symposium on Computer Architecture, Jun. 2016, pp.78–89. DOI: 10.1109/ISCA.2016.17. [9] Wu C J, Jaleel A, Martonosi M, Steely S C, Emer J. PACMan: Prefetch-aware cache management for high performance caching. In Proc. the 44th Annual IEEE/ACM International Symposium on Microarchitecture, Dec. 2011, pp.442–453. DOI: 10.1145/2155620.2155672. [10] Heirman W, Bois K D, Vandriessche Y, Eyerman S, Hur I. Near-side prefetch throttling: Adaptive prefetching for high-performance many-core processors. In Proc. the 27th International Conference on Parallel Architectures and Compilation Techniques, Nov. 2018, Article No. 28. DOI: 10.1145/3243176.3243181. [11] Ishii Y, Inaba M, Hiraki K. Unified memory optimizing architecture: Memory subsystem control with a unified predictor. In Proc. the 26th ACM International Conference on Supercomputing, Jun. 2012, pp.267–278. DOI: 10.1145/2304576.2304614. [12] Kim J, Pugsley S H, Gratz P V, Reddy A L N, Wilkerson C, Chishti Z. Path confidence based lookahead prefetching. In Proc. the 49th Annual IEEE/ACM International Symposium on Microarchitecture, Oct. 2016. DOI: 10.1109/MICRO.2016.7783763. [13] O'Neil E J, O'Neil P E, Weikum G. The LRU-K page replacement algorithm for database disk buffering. ACM SIGMOD Record, 1993, 22(2): 297–306. DOI: 10.1145/170036.170081. [14] Srinath S, Mutlu O, Kim H, Patt Y N. Feedback directed prefetching: Improving the performance and bandwidth-efficiency of hardware prefetchers. In Proc. the 13th International Symposium on High Performance Computer Architecture, Feb. 2007, pp.63–74. DOI: 10.1109/HPCA.2007.346185. [15] Jain A, Lin C. Rethinking Belady's algorithm to accommodate prefetching. In Proc. the 45th Annual International Symposium on Computer Architecture, Jun. 2018, pp.110–123. DOI: 10.1109/ISCA.2018.00020. [16] Kim J, Teran E, Gratz P V, Jiménez D A, Pugsley S H, Wilkerson C. Kill the program counter: Reconstructing program behavior in the processor cache hierarchy. ACM SIGPLAN Notices, 2017, 52(4): 737–749. DOI: 10.1145/3093336.3037701. [17] Henning J L. SPEC CPU2006 benchmark descriptions. ACM SIGARCH Computer Architecture News, 2006, 34(4): 1–17. DOI: 10.1145/1186736.1186737. [18] Bucek J, Lange K D, von Kistowski J. SPEC CPU2017: Next-generation compute benchmark. In Proc. the 2018 ACM/SPEC International Conference on Performance Engineering, Apr. 2018, pp.41–42. DOI: 10.1145/3185768.3185771. [19] Perelman E, Hamerly G, Van Biesbrouck M, Sherwood T, Calder B. Using SimPoint for accurate and efficient simulation. ACM SIGMETRICS Performance Evaluation Review, 2003, 31(1): 318–319. DOI: 10.1145/885651.781076. [20] Bhatia E, Chacon G, Pugsley S, Teran E, Gratz P V, Jiménez D A. Perceptron-based prefetch filtering. In Proc. the 46th International Symposium on Computer Architecture, Jun. 2019. DOI: 10.1145/3307650.3322207. [21] Shevgoor M, Koladiya S, Balasubramonian R, Wilkerson C, Pugsley S H, Chishti Z. Efficiently prefetching complex address patterns. In Proc. the 48th International Symposium on Microarchitecture, Dec. 2015, pp.141–152. DOI: 10.1145/2830772.2830793. [22] Seshadri V, Yedkar S, Xin H Y, Mutlu O, Gibbons P B, Kozuch M A, Mowry T C. Mitigating prefetcher-caused pollution using informed caching policies for prefetched blocks. ACM Transactions on Architecture and Code Optimization, 2015, 11(4): Article No. 51. DOI: 10.1145/2677956. |
[1] | Linfeng Shen, Yuchi Chen, and Jiangchuan Liu. Gaze-Assisted Viewport Control for 360° Video on Smartphone [J]. Journal of Computer Science and Technology, 2022, 37(4): 906-918. |
[2] | Geun Yong Kim, Joon-Young Paik, Yeongcheol Kim, and Eun-Sun Cho. Byte Frequency Based Indicators for Crypto-Ransomware Detection from Empirical Analysis [J]. Journal of Computer Science and Technology, 2022, 37(2): 423-442. |
[3] | Jian-Zhe Zhao, Xing-Wei Wang, Ke-Ming Mao, Chen-Xi Huang, Yu-Kai Su, and Yu-Chen Li. Correlated Differential Privacy of Multiparty Data Release in Machine Learning [J]. Journal of Computer Science and Technology, 2022, 37(1): 231-251. |
[4] | Yi Zhong, Jian-Hua Feng, Xiao-Xin Cui, Xiao-Le Cui. Machine Learning Aided Key-Guessing Attack Paradigm Against Logic Block Encryption [J]. Journal of Computer Science and Technology, 2021, 36(5): 1102-1117. |
[5] | Jian-Wei Cui, Wei Lu, Xin Zhao, Xiao-Yong Du. Efficient Model Store and Reuse in an OLML Database System [J]. Journal of Computer Science and Technology, 2021, 36(4): 792-805. |
[6] | Sara Elmidaoui, Laila Cheikhi, Ali Idri, Alain Abran. Machine Learning Techniques for Software Maintainability Prediction: Accuracy Analysis [J]. Journal of Computer Science and Technology, 2020, 35(5): 1147-1174. |
[7] | Andrea Caroppo, Alessandro Leone, Pietro Siciliano. Comparison Between Deep Learning Models and Traditional Machine Learning Approaches for Facial Expression Recognition in Ageing Adults [J]. Journal of Computer Science and Technology, 2020, 35(5): 1127-1146. |
[8] | Shu-Zheng Zhang, Zhen-Yu Zhao, Chao-Chao Feng, Lei Wang. A Machine Learning Framework with Feature Selection for Floorplan Acceleration in IC Physical Design [J]. Journal of Computer Science and Technology, 2020, 35(2): 468-474. |
[9] | Rui Ren, Jiechao Cheng, Xi-Wen He, Lei Wang, Jian-Feng Zhan, Wan-Ling Gao, Chun-Jie Luo. HybridTune: Spatio-Temporal Performance Data Correlation for Performance Diagnosis of Big Data Systems [J]. Journal of Computer Science and Technology, 2019, 34(6): 1167-1184. |
[10] | João Fabrício Filho, Luis Gustavo Araujo Rodriguez, Anderson Faustino da Silva. Yet Another Intelligent Code-Generating System: A Flexible and Low-Cost Solution [J]. Journal of Computer Science and Technology, 2018, 33(5): 940-965. |
[11] | Lan Yao, Feng Zeng, Dong-Hui Li, Zhi-Gang Chen. Sparse Support Vector Machine with Lp Penalty for Feature Selection [J]. , 2017, 32(1): 68-77. |
[12] | Xin-Qi Bao, Yun-Fang Wu. A Tensor Neural Network with Layerwise Pretraining: Towards Effective Answer Retrieval [J]. , 2016, 31(6): 1151-1160. |
[13] | Najam Nazar, Yan Hu, He Jiang. Summarizing Software Artifacts: A Literature Review [J]. , 2016, 31(5): 883-909. |
[14] | Xi-Jin Zhang, Yi-Fan Lu, Song-Hai Zhang. Multi-Task Learning for Food Identification and Analysis with Deep Convolutional Neural Networks [J]. , 2016, 31(3): 489-500. |
[15] | Lixue Xia, Peng Gu, Boxun Li, Tianqi Tang, Xiling Yin, Wenqin Huangfu, Shimeng Yu, Yu Cao, Yu Wang, Huazhong Yang. Technological Exploration of RRAM Crossbar Array for Matrix-Vector Multiplication [J]. , 2016, 31(1): 3-19. |
|
|