|
Journal of Computer Science and Technology ›› 2022, Vol. 37 ›› Issue (3): 615-625.doi: 10.1007/s11390-022-2185-7
Special Issue: Artificial Intelligence and Pattern Recognition; Computer Graphics and Multimedia
• Special Section of CVM 2022 • Previous Articles Next Articles
Zheng Chen (陈铮), Xiao-Nan Fang (方晓楠), and Song-Hai Zhang* (张松海), Member, IEEE
[1] Mémin É, Pérez P. Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Trans. Image Process., 1998, 7(5): 703-719. DOI: 10.1109/83.668027. [2] Dosovitskiy A, Fischer P, Ilg E et al. FlowNet: Learning optical flow with convolutional networks. In Proc. the 2015 IEEE International Conference on Computer Vision, December 2015, pp.2758-2766. DOI: 10.1109/ICCV.2015.316. [3] Ilg E, Mayer N, Saikia T et al. FlowNet 2.0: Evolution of optical flow estimation with deep networks. In Proc. the 2017 IEEE Conference on Computer Vision and Pattern Recognition, July 2017, pp.1647-1655. DOI: 10.1109/CVPR.2017.179. [4] Ranjan A, Black M J. Optical flow estimation using a spatial pyramid network. In Proc. the 2017 IEEE Conference on Computer Vision and Pattern Recognition, July 2017, pp.2720-2729. DOI: 10.1109/CVPR.2017.291. [5] Sun D Q, Yang X D, Liu M Y, Kautz J. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In Proc. the 2018 IEEE Conference on Computer Vision and Pattern Recognition, June 2018, pp.8934-8943. DOI: 10.1109/CVPR.2018.00931. [6] Zhao S Y, Sheng Y L, Dong Y et al. MaskFlownet: Asymmetric feature matching with learnable occlusion mask. In Proc. the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2020, pp.6277-6286. DOI: 10.1109/CVPR42600.2020.00631. [7] Teed Z, Deng J. RAFT: Recurrent all-pairs field transforms for optical flow. In Proc. the 16th European Conference on Computer Vision, August 2020, pp.402-419. DOI: 10.1007/978-3-030-58536-5. [8] Lowe D G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis., 2004, 60(2): 91-110. DOI: 10.1023/B:VISI.0000029664.99615.94. [9] DeTone D, Malisiewicz T, Rabinovich A. Superpoint: Self-supervised interest point detection and description. In Proc. the 2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops, June 2018, pp.224-236. DOI: 10.1109/CVPRW.2018.00060. [10] Luo Z X, Zhou L, Bai X Y et al. ASLFeat: Learning local features of accurate shape and localization. In Proc. the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2020, pp.6588-6597. DOI: 10.1109/CVPR42600.2020.00662. [11] Sarlin P E, DeTone D, Malisiewicz T, Rabinovich A. SuperGlue: Learning feature matching with graph neural networks. In Proc. the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2020, pp.4937-4946. DOI: 10.1109/CVPR42600.2020.00499. [12] Jiang W, Trulls E, Hosang J et al. COTR: Correspondence transformer for matching across images. In Proc. the 2021 IEEE/CVF International Conference on Computer Vision, October 2021, pp.6187-6197. DOI: 10.1109/ICCV48922.2021.00615. [13] Efe U, Ince K G, Alatan A A. DFM: A performance baseline for deep feature matching. In Proc. the 2021 IEEE Conference on Computer Vision and Pattern Recognition Workshops, June 2021, pp.4284-4293. DOI: 10.1109/CVPRW53098.2021.00484. [14] Evangelidis G D, Psarakis E Z. Parametric image alignment using enhanced correlation coefficient maximization. IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30(10): 1858-1865. DOI: 10.1109/TPAMI.2008.113. [15] Benhimane S, Malis E. Real-time image-based tracking of planes using efficient second-order minimization. In Proc. the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, September 28-October 2, 2004, pp.943-948. DOI: 10.1109/IROS.2004.1389474. [16] Chen L, Zhou F, Shen Y et al. Illumination insensitive efficient second-order minimization for planar object tracking. In Proc. the 2017 IEEE International Conference on Robotics and Automation, May 29-June 3, 2017, pp.4429-4436. DOI: 10.1109/ICRA.2017.7989512. [17] DeTone D, Malisiewicz T, Rabinovich A. Deep image homography estimation. arXiv:1606.03798, 2016. https:// arxiv.org/pdf/1606.03798.pdf, Jan. 2022. [18] Dai A, Chang A X, Savva M et al. ScanNet: Richly-annotated 3D reconstructions of indoor scenes. In Proc. the 2017 IEEE Conference on Computer Vision and Pattern Recognition, July 2017, pp.2432-2443. DOI: 10.1109/CVPR.2017.261. [19] Dai A, Niesner M, Zollhöfer M et al. BundleFusion: Real-time globally consistent 3D reconstruction using on-the-fly surface re-integration. arXiv:1604.01093, 2016. https: //arxiv.org/pdf/1604.01093.pdf, Jan. 2022. [20] Li J W, Gao W, Wu Y H et al. High-quality indoor scene 3D reconstruction with RGB-D cameras: A brief review. Computational Visual Media, 2022, 8(3): 369-393. DOI: 10.1007/s41095-021-0250-8. [21] Muratov O, Slynko Y, Chernov V et al. 3DCapture: 3D reconstruction for a smartphone. In Proc. the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops, June 26-July 1, 2016, pp.893-900. DOI: 10.1109/CVPRW.2016.116. [22] Yang X B, Zhou L Y, Jiang H Q et al. Mobile3DRecon: Real-time monocular 3D reconstruction on a mobile phone. IEEE Trans. Vis. Comput. Graph., 2020, 26(12): 3446-3456. DOI: 10.1109/TVCG.2020.3023634. [23] Zhang S H, Li X L, Liu Y T. Scale-aware insertion of virtual objects in monocular videos. In Proc. the 2020 IEEE International Symposium on Mixed and Augmented Reality, November 2020, pp.36-44. DOI: 10.1109/ISMAR50242.2020.00022. [24] Chen D, Tang F, Dong W M et al. SiamCPN: Visual tracking with the Siamese center-prediction network. Comput. Vis. Media, 2021, 7(2): 253-265. DOI: 10.1007/s41095-021-0212-1. [25] Xue Z X, Wu W. Anomaly detection by exploiting the tracking trajectory in surveillance videos. Sci. China: Inf. Sci., 2020, 63(5): Article No. 154101. DOI: 10.1007/s11432-018-9792-8. [26] Zhang D, Li T S, Chen C L. Target tracking algorithm based on a broad learning system. Science China: Information Sciences, 2022, 65(5): Article No. 154201. DOI: 10.1007/s11432-020-3272-y. [27] Li K, He F, Yu H. Robust visual tracking based on convolutional features with illumination and occlusion handing. J. Comput. Sci. Technol., 2018, 33(1): 223-236. DOI: 10.1007/s11390-017-1764-5. [28] Li J C, Zhong F, Xu S H, Qin X Y. 3D object tracking with adaptively weighted local bundles. J. Comput. Sci. Technol., 2021, 36(3): 555-571. DOI: 10.1007/s11390-021-1272-5. [29] Avidan S. Support vector tracking. IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26(8): 1064-1072. DOI: 10.1109/TPAMI.2004.53. [30] Ross D A, Lim J, Lin R S, Yang M H. Incremental learning for robust visual tracking. Int. J. Comput. Vis., 2008, 77(1/2/3): 125-141. DOI: 10.1007/s11263-007-0075-7. [31] Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision. In Proc. the 7th International Joint Conference on Artificial Intelligence, August 1981, pp.674-679. [32] Henriques J F, Caseiro R, Martins P, Batista J. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(3): 583-596. DOI: 10.1109/TPAMI.2014.2345390. [33] Arulampalam M S, Maskell S, Gordon N J, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process., 2002, 50(2): 174-188. DOI: 10.1109/78.978374. [34] Li B, Wu W, Wang Q et al. SiamRPN + +: Evolution of Siamese visual tracking with very deep networks. In Proc. the IEEE Conference on Computer Vision and Pattern Recognition, June 2019, pp.4282-4291. DOI: 10.1109/CVPR.2019.00441. [35] Guo D Y, Wang J, Cui Y et al. SiamCAR: Siamese fully convolutional classification and regression for visual tracking. In Proc. the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2020, pp.6268-6276. DOI: 10.1109/CVPR42600.2020.00630. [36] Guo D Y, Shao Y Y, Cui Y et al. Graph attention tracking. In Proc. the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2021, pp.9543-9552. DOI: 10.1109/CVPR46437.2021.00942. [37] Chen X, Yan B, Zhu J W et al. Transformer tracking. In , June 2021, pp.8126-8135. DOI: 10.1109/CVPR46437.2021.00803. [38] Wang N, Zhou W G, Wang J et al. Transformer meets tracker: Exploiting temporal context for robust visual tracking. In Proc. the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2021, pp.1571-1580. DOI: 10.1109/CVPR46437.2021.00162. [39] Horn B K P, Schunck B G. Determining optical flow. Artif. Intell., 1981, 17(1/2/3): 185-203. DOI: 10.1016/0004-3702(81)90024-2. [40] Hartley R, Zisserman A. Multiple view geometry in computer vision. Robotica, 2001, 19(2): 233-236. DOI: 10.1017/S0263574700223217. [41] Muja M, Lowe D G. Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36(11): 2227-2240. DOI: 10.1109/TPAMI.2014.2321376. [42] Fischler M A, Bolles R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM, 1981, 24(6): 381-395. DOI: 10.1145/358669.358692. [43] Barath D, Matas J, Noskova J. MAGSAC: Marginalizing sample consensus. In Proc. the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2019, pp.10197-10205. DOI: 10.1109/CVPR.2019.01044. [44] Nguyen T, Chen S W, Shivakumar S S et al. Unsupervised deep homography: A fast and robust homography estimation model. IEEE Robotics Autom. Lett., 2018, 3(3): 2346-2353. DOI: 10.1109/LRA.2018.2809549. [45] Zhang J R, Wang C, Liu S C et al. Content-aware unsupervised deep homography estimation. In Proc. the 16th European Conference on Computer Vision, August 2020, pp.653-669. DOI: 10.1007/978-3-030-58452-8. [46] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In Proc. the 2016 IEEE Conference on Computer Vision and Pattern Recognition, June 2016, pp.770-778. DOI: 10.1109/CVPR.2016.90. [47] Chen L C, Papandreou G, Kokkinos I et al. DeepLab: Semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell., 2018, 40(4): 834-848. DOI: 10.1109/TPAMI.2017.2699184. [48] Chung J Y, Gülçehre Ç, Cho K, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv:1412.3555, 2014. https://arxiv.org/pdf/ 1412.3555.pdf, Jan. 2022. [49] Sun X, Xiao B, Wei F Y et al. Integral human pose regression. In Proc. the 15th European Conference on Computer Vision, September 2018, pp.536-553. DOI: 10.1007/978-3-030-01231-1. [50] Girshick R B. Fast R-CNN. In Proc. the 2015 IEEE International Conference on Computer Vision, December 2015, pp.1440-1448. DOI: 10.1109/ICCV.2015.169. [51] Deng J, Dong W, Socher R et al. ImageNet: A large-scale hierarchical image database. In Proc. the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 2009, pp.248-255. DOI: 10.1109/CVPR.2009.5206848. [52] Kingma D P, Ba J. Adam: A method for stochastic optimization. In Proc. the 3rd International Conference on Learning Representations, May 2015. |
[1] | Zhi-Jing Wu, Yi-Qun Liu, Jia-Xin Mao, Min Zhang, and Shao-Ping Ma. Leveraging Document-Level and Query-Level Passage Cumulative Gain for Document Ranking [J]. Journal of Computer Science and Technology, 2022, 37(4): 814-838. |
[2] | Hua-Peng Wei, Ying-Ying Deng, Fan Tang, Xing-Jia Pan, and Wei-Ming Dong. A Comparative Study of CNN- and Transformer-Based Visual Style Transfer [J]. Journal of Computer Science and Technology, 2022, 37(3): 601-614. |
[3] | Xiao-Zheng Xie, Jian-Wei Niu, Xue-Feng Liu, Qing-Feng Li, Yong Wang, Jie Han, and Shaojie Tang. DG-CNN: Introducing Margin Information into Convolutional Neural Networks for Breast Cancer Diagnosis in Ultrasound Images [J]. Journal of Computer Science and Technology, 2022, 37(2): 277-294. |
[4] | Xin-Feng Wang, Xiang Zhou, Jia-Hua Rao, Zhu-Jin Zhang, and Yue-Dong Yang. Imputing DNA Methylation by Transferred Learning Based Neural Network [J]. Journal of Computer Science and Technology, 2022, 37(2): 320-329. |
[5] | Xin Zhang, Siyuan Lu, Shui-Hua Wang, Xiang Yu, Su-Jing Wang, Lun Yao, Yi Pan, and Yu-Dong Zhang. Diagnosis of COVID-19 Pneumonia via a Novel Deep Learning Architecture [J]. Journal of Computer Science and Technology, 2022, 37(2): 330-343. |
[6] | Dan-Hao Zhu, Xin-Yu Dai, Jia-Jun Chen. Pre-Train and Learn: Preserving Global Information for Graph Neural Networks [J]. Journal of Computer Science and Technology, 2021, 36(6): 1420-1430. |
[7] | Yi Zhong, Jian-Hua Feng, Xiao-Xin Cui, Xiao-Le Cui. Machine Learning Aided Key-Guessing Attack Paradigm Against Logic Block Encryption [J]. Journal of Computer Science and Technology, 2021, 36(5): 1102-1117. |
[8] | Feng Wang, Guo-Jie Luo, Guang-Yu Sun, Yu-Hao Wang, Di-Min Niu, Hong-Zhong Zheng. Area Efficient Pattern Representation of Binary Neural Networks on RRAM [J]. Journal of Computer Science and Technology, 2021, 36(5): 1155-1166. |
[9] | Shao-Jie Qiao, Guo-Ping Yang, Nan Han, Hao Chen, Fa-Liang Huang, Kun Yue, Yu-Gen Yi, Chang-An Yuan. Cardinality Estimator: Processing SQL with a Vertical Scanning Convolutional Neural Network [J]. Journal of Computer Science and Technology, 2021, 36(4): 762-777. |
[10] | Chen-Chen Sun, De-Rong Shen. Mixed Hierarchical Networks for Deep Entity Matching [J]. Journal of Computer Science and Technology, 2021, 36(4): 822-838. |
[11] | Yang Liu, Ruili He, Xiaoqian Lv, Wei Wang, Xin Sun, Shengping Zhang. Is It Easy to Recognize Baby's Age and Gender? [J]. Journal of Computer Science and Technology, 2021, 36(3): 508-519. |
[12] | Yang-Jie Cao, Shuang Wu, Chang Liu, Nan Lin, Yuan Wang, Cong Yang, Jie Li. Seg-CapNet: A Capsule-Based Neural Network for the Segmentation of Left Ventricle from Cardiac Magnetic Resonance Imaging [J]. Journal of Computer Science and Technology, 2021, 36(2): 323-333. |
[13] | Zhang-Jin Huang, Xiang-Xiang He, Fang-Jun Wang, Qing Shen. A Real-Time Multi-Stage Architecture for Pose Estimation of Zebrafish Head with Convolutional Neural Networks [J]. Journal of Computer Science and Technology, 2021, 36(2): 434-444. |
[14] | Bo-Wei Zou, Rong-Tao Huang, Zeng-Zhuang Xu, Yu Hong, Guo-Dong Zhou. Language Adaptation for Entity Relation Classification via Adversarial Neural Networks [J]. Journal of Computer Science and Technology, 2021, 36(1): 207-220. |
[15] | Yue-Huan Wang, Ze-Nan Li, Jing-Wei Xu, Ping Yu, Taolue Chen, Xiao-Xing Ma. Predicted Robustness as QoS for Deep Neural Network Models [J]. Journal of Computer Science and Technology, 2020, 35(5): 999-1015. |
|