|
Journal of Computer Science and Technology ›› 2022, Vol. 37 ›› Issue (3): 626-640.doi: 10.1007/s11390-022-2204-8
Special Issue: Artificial Intelligence and Pattern Recognition; Computer Graphics and Multimedia
• Special Section of CVM 2022 • Previous Articles Next Articles
Xin Feng (冯欣), Senior Member, CCF, Member, IEEE, Hao-Ming Wu (吴浩铭), Yi-Hao Yin (殷一皓), and Li-Bin Lan (兰利彬), Member, CCF
[1] Kim C, Li F, Rehg J M. Multi-object tracking with neural gating using bilinear LSTM. In Proc. the 15th European Conference on Computer Vision, October 2018, pp.208-224. DOI: 10.1007/978-3-030-01237-3. [2] Bewley A, Ge Z, Ott L, Ramos F, Upcroft B. Simple online and realtime tracking. In Proc. the 2016 IEEE International Conference on Image Processing, September 2016, pp.3464-3468. DOI: 10.1109/ICIP.2016.7533003. [3] Tang S, Andriluka M, Andres B, Schiele B. Multiple people tracking by lifted multicut and person re-identification. In Proc. the 2017 IEEE Conference on Computer Vision and Pattern Recognition, July 2017, pp.3701-3710. DOI: 10.1109/CVPR.2017.394. [4] Possegger H, Mauthner T, Roth P M, Bischof H. Occlusion geodesics for online multi-object tracking. In Proc. the 2014 IEEE Conference on Computer Vision and Pattern Recognition, June 2014, pp.1306-1313. DOI: 10.1109/CVPR.2014.170. [5] He A, Luo C, Tian X, Zeng W. A twofold Siamese network for real-time object tracking. In Proc. the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2018, pp.4834-4843. DOI: 10.1109/CVPR.2018.00508. [6] Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, June 2016, 39: 1137-1149. DOI: 10.1109/TPAMI.2016.2577031. [7] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger. In Proc. the 2017 IEEE Conference on Computer Vision and Pattern Recognition, July 2017, pp.6517-6525. DOI: 10.1109/CVPR.2017.690. [8] Redmon J, Farhadi A. YOLOv3: An incremental improvement. arXiv:1804.02767, 2018. https://arxiv.org/ abs/1804.02767, Jan. 2022. [9] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimal speed and accuracy of object detection. arXiv:2004.10934, 2020. https://arxiv.org/abs/2004.10934, April 2022. [10] Rosebrock A. Intersection over Union (IoU) for object detection. https://pyimagesearch.com/2016/11/07/intersectionover-union-iou-for-object-detection/, July 2021. [11] Feng X, Xue Y, Wang Y. An object based graph representation for video comparison. In Proc. the 2017 IEEE International Conference on Image Processing, September 2017, pp.2548-2552. DOI: 10.1109/ICIP.2017.8296742. [12] Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric. In Proc. the 2017 IEEE International Conference on Image Processing, September 2017, pp.3645-3649. DOI: 10.1109/ICIP.2017.8296962. [13] Yu F, Li W, Li Q, Liu Y, Shi X, Yan J. POI: Multiple object tracking with high performance detection and appearance feature. In Proc. the 14th European Conference on Computer Vision Workshops, October 2016, pp.36-42. DOI: 10.1007/978-3-319-48881-3. [14] Sun S, Akhtar N, Song H, Mian A, Shah M. Deep affinity network for multiple object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(1): 104-119. DOI: 10.1109/TPAMI.2019.2929520. [15] Wang Z, Zheng L, Liu Y, Li Y, Wang S. Towards real-time multi-object tracking. In Proc. the 16th European Conference on Computer Vision, August 2020, pp.107-122. DOI: 10.1007/978-3-030-58621-8. [16] Lu Z, Rathod V, Votel R, Huang J. RetinaTrack: Online single stage joint detection and tracking. In Proc. the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2020, pp.14656-14666. DOI: 10.1109/CVPR42600.2020.01468. [17] Zhu J, Yang H, Liu N, Kim M, Zhang W, Yang M H. Online multi-object tracking with dual matching attention networks. In Proc. the 15th European Conference on Computer Vision, October 2018, pp.379-396. DOI: 10.1007/978-3-030-01228-1. [18] Peng J, Wang C, Wan F, Wu Y, Wang Y, Tai Y, Fu Y. Chained-tracker: Chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking. In Proc. the 16th European Conference on Computer Vision, August 2020, pp.145-161. DOI: 10.1007/978-3-030-58548-8. [19] Zhou X, Koltun V, Krähenbühl P. Tracking objects as points. In Proc. the 16th European Conference on Computer Vision, August 2020, pp.474-490. DOI: 10.1007/978-3-030-58548-8. [20] Zhang Y, Wang C, Wang X, Zeng W, Liu W. FairMOT: On the fairness of detection and re-identification in multiple object tracking. International Journal of Computer Vision, 2021, 129(11): 3069-3087. DOI: 10.1007/s11263-021-01513-4. [21] Zhou X, Wang D, Krähenbühl P. Objects as points. arXiv:1904.07850, 2019. https://arxiv.org/abs/1904.07850, April 2022. [22] Yu F, Wang D, Shelhamer E, Darrell T. Deep layer aggregation. In Proc. the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2018, pp.2403-2412. DOI: 10.1109/CVPR.2018.00255. [23] Wang X, Liu Z. Salient object detection by optimizing robust background detection. In Proc. the 18th IEEE International Conference on Communication Technology, October 2018, pp.1164-1168. DOI: 10.1109/ICCT.2018.8600184. [24] Law H, Deng J. CornerNet: Detecting objects as paired keypoints. In Proc. the 15th European Conference on Computer Vision, October 2018, pp.765-781. DOI: 10.1007/978-3-030-01264-9. [25] Tian Z, Shen C, Chen H, He T. FCOS: Fully convolutional one-stage object detection. In Proc. the 2019 IEEE/CVF International Conference on Computer Vision, Oct. 27-Nov. 2, 2019, pp.9626-9635. DOI: 10.1109/ICCV.2019.00972. [26] Neubeck A, van Gool L. Efficient non-maximum suppression. In Proc. the 18th International Conference on Pattern Recognition, August 2006, pp.850-855. DOI: 10.1109/ICPR.2006.479. [27] Milan A, Leal-Taixé L, Reid I, Roth S, Schindler K. MOT16: A benchmark for multi-object tracking. arXiv:1603.00831, 2016. https://arxiv.org/abs/1603.00831, Jan. 2022. [28] Dendorfer P, Rezatofighi H, Milan A et al. MOT20: A benchmark for multi object tracking in crowded scenes. arXiv:2003.09003, 2020. https://arxiv.org/abs/ 2003.09003, March 2022. [29] Felzenszwalb P F, Girshick R B, McAllester D, Ramanan D. Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 32(9): 1627-1645. DOI: 10.1109/TPAMI.2009.167. [30] Yang F, Choi W, Lin Y. Exploit all the layers: Fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers. In Proc. the 2016 IEEE Conference on Computer Vision and Pattern Recognition, June 2016, pp.2129-2137. DOI: 10.1109/CVPR.2016.234. [31] Bernardin K, Stiefelhagen R. Evaluating multiple object tracking performance: The CLEAR MOT metrics. EURASIP Journal on Image and Video Processing, 2008, 2008: Article No. 1. DOI: 10.1155/2008/246309. [32] Luiten J, Ošep A, Dendorfer P, Torr P, Geiger A, Leal-Taixé L, Leibe B. HOTA: A higher order metric for evaluating multi-object tracking. International Journal of Computer Vision, 2021, 129(2): 548-578. DOI: 10.1007/s11263-020-01375-2. [33] Paszke A, Gross S, Chintala S et al. Automatic differentiation in PyTorch. In Proc. the 31st Conference on Neural Information Processing Systems Workshop, Dec. 2017. [34] Shao S, Zhao Z, Li B, Xiao T, Yu G, Zhang X, Sun J. CrowdHuman: A benchmark for detecting human in a crowd. arXiv:1805.00123, 2018. https://arxiv.org/abs/ 1805.00123, Jan. 2022. [35] Zhang S, Xie Y, Wan J, Xia H, Li S Z, Guo G. WiderPerson: A diverse dataset for dense pedestrian detection in the wild. IEEE Transactions on Multimedia, 2019, 22(2): 380-393. DOI: 10.1109/TMM.2019.2929005. [36] Zhang S, Benenson R, Schiele B. CityPersons: A diverse dataset for pedestrian detection. In Proc. the 2017 IEEE Conference on Computer Vision and Pattern Recognition, June 2017, pp.4457-4465. DOI: 10.1109/CVPR.2017.474. [37] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014. https://arxiv.org/abs/1409.1556, April 2022. [38] Pang B, Li Y, Zhang Y, Li M, Lu C. TubeTK: Adopting tubes to track multi-object in a one-step training model. In Proc. the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2020, pp.6307-6317. DOI: 10.1109/CVPR42600.2020.00634. [39] Zhang Y, Sheng H, Wu Y, Wang S, Ke W, Xiong Z. Multiplex labeling graph for near-online tracking in crowded scenes. IEEE Internet of Things Journal, 2021, 7(9): 7892-7902. DOI: 10.1109/JIOT.2020.2996609. [40] Li W, Xiong Y, Yang S, Xu M, Wang Y, Xia W. Semi-TCL: Semi-supervised track contrastive representation learning. arXiv:2107.02396, 2021. https://arxiv.org/abs/2107.02396, Jan. 2022. |
[1] | Nan Wang, Hai-Zhou Ai, and Feng Tang. Who Blocks Who: Simultaneous Segmentation of Occluded Objects [J]. , 2013, 28(5): 890-906. |
|