|
Journal of Computer Science and Technology ›› 2023, Vol. 38 ›› Issue (2): 405-421.doi: 10.1007/s11390-022-2553-3
Special Issue: Computer Architecture and Systems
• Computer Architecture and Systems • Previous Articles Next Articles
Ying Zhang1 (张 颖), Member, CCF, IEEE, Peng-Fei Ji1 (季鹏飞), Pan-Wei Zhu1 (朱潘玮), Zebo Peng2, Senior Member, IEEE, Hua-Wei Li3 (李华伟), Fellow, CCF, and Jian-Hui Jiang1, * (江建慧), Senior Member, CCF
[1]
Zhang Y, Hong X P, Chen Z S, Peng Z B, Jiang J H. A deterministic-path routing algorithm for tolerating many faults on very-large-scale network-on-chip. ACM Trans. Design Automation of Electronic Systems, 2021, 26(1): Article No. 8. DOI: 10.1145/3414060. [2] Zhang Y, Chakrabarty K, Li H W, Jiang J H. Software-based online self-testing of network-on-chip using bounded model checking. In Proc. the 2017 IEEE International Test Conference, Oct. 31–Nov. 2, 2017. DOI: 10.1109/TEST.2017.8242037. [3] Dongarra J. Report on the Sunway TaihuLight system. Tech Report UT-EECS-16-742, Oak Ridge National Laboratory, 2016. https://netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016-old.pdf, Mar. 2023. [4] Zhang L, Han Y H, Xu Q, Li X W, Li H W. On topology reconfiguration for defect-tolerant NoC-based homogeneous manycore systems. IEEE Trans. Very Large Scale Integration (VLSI) Systems, 2009, 17(9): 1173–1186. DOI: 10.1109/TVLSI.2008.2002108. [5] Ouyang Y M, Da J, Wang X M, Han Q Q, Liang H G, Du G M. A TSV fault-tolerant scheme based on failure classification in 3D-NoC. Journal of Circuits, Systems and Computers, 2017, 26(4): 1750059. DOI: 10.1142/S0218126617500591. [6] Chen Z S, Zhang Y, Peng Z B, Jiang J H. A deterministic-path routing algorithm for tolerating many faults on wafer-level NoC. In Proc. the 2019 Design, Automation and Test in Europe Conference & Exhibition, Mar. 2019, pp.1337–1342. DOI: 10.23919/DATE.2019.8714948. [7] Lee D, Das S, Doppa J R, Pande P P, Chakrabarty K. Performance and thermal tradeoffs for energy-efficient monolithic 3D network-on-chip. ACM Trans. Design Automation of Electronic Systems, 2018, 23(5): Article No. 60. DOI: 10.1145/3223046. [8] Liu W C, Yang L, Jiang W W, Feng L, Guan N, Zhang W, Dutt N. Thermal-aware task mapping on dynamically reconfigurable network-on-chip based multiprocessor system-on-chip. IEEE Trans. Computers, 2018, 67(12): 1818–1834. DOI: 10.1109/TC.2018.2844365. [9] Xiang D, Chakrabarty K, Fujiwara H. Multicast-based testing and thermal-aware test scheduling for 3D ICs with a stacked network-on-chip. IEEE Trans. Computers, 2016, 65(9): 2767–2779. DOI: 10.1109/TC.2015.2493548. [10] Wang L, Wang X H, Leung H F, Mak T. A non-minimal routing algorithm for aging mitigation in 2D-mesh NoCs. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 2019, 38(7): 1373–1377. DOI: 10.1109/TCAD.2018.2855149. [11] Xiang D, Shen K L, Bhattacharya B B, Wen X Q, Lin X J. Thermal-aware small-delay defect testing in integrated circuits for mitigating overkill. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(3): 499–512. DOI: 10.1109/TCAD.2015.2474365. [12] Biere A, Cimatti A, Clarke E M, Strichman O, Zhu Y S. Bounded model checking. Advances in Computers, 2003, 58: 117–148. DOI: 10.1016/S0065-2458(03)58003-2. [13] Clarke E, Biere A, Raimi R, Zhu Y S. Bounded model checking using satisfiability solving. Formal Methods in System Design, 2001, 19(1): 7–34. DOI: 10.1023/A:1011276507260. [14] Cota E, Liu C. Constraint-driven test scheduling for NoC-based systems. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 2006, 25(11): 2465–2478. DOI: 10.1109/TCAD.2006.881331. [15] Yuan F, Huang L, Xu Q. Re-examining the use of network-on-chip as test access mechanism. In Proc. the 2008 Conference on Design, Automation and Test in Europe, Mar. 2018, pp.808–811. DOI: 10.1145/1403375.1403571. [16] Richter M, Chakrabarty K. Optimization of test pin-count, test scheduling, and test access for NoC-based multicore SoCs. IEEE Trans. Computers, 2014, 63(3): 691–702. DOI: 10.1109/TC.2013.82. [17] Strano A, Gómez C, Ludovici D, Favalli M, Gómez M E, Bertozzi D. Exploiting network-on-chip structural redundancy for a cooperative and scalable built-in self-test architecture. In Proc. the 2011 Design, Automation and Test in Europe, Mar. 2011. DOI: 10.1109/DATE.2011.5763109. [18] Wang J S, Ebrahimi M, Huang L T, Xie X, Li Q, Li G J, Jantsch A. Efficient design-for-test approach for networks-on-chip. IEEE Trans. Computers, 2019, 68(2): 198–213. DOI: 10.1109/TC.2018.2865948. [19] Herve M B, Cota E, Kastensmidt F L, Lubaszewski M. NoC interconnection functional testing: Using boundary-scan to reduce the overall testing time. In Proc. the 10th Latin American Test Workshop, Mar. 2009. DOI: 10.1109/LATW.2009.4813801. [20] Kakoee M R, Bertacco V, Benini L. At-speed distributed functional testing to detect logic and delay faults in NoCs. IEEE Trans. Computers, 2014, 63(3): 703–717. DOI: 10.1109/TC.2013.202. [21] Kranitis N, Merentitis A, Theodorou G, Paschalis A, Gizopoulos D. Hybrid-SBST methodology for efficient testing of processor cores. IEEE Design & Test of Computers, 2008, 25(1): 64–75. DOI: 10.1109/MDT.2008.15. [22] Collet J H, Zajac P, Psarakis M, Gizopoulos D. Chip self-organization and fault tolerance in massively defective multicore arrays. IEEE Trans. Dependable and Secure Computing, 2011, 8(2): 207–217. DOI: 10.1109/TDSC.2009.53. [23] Dalirsani A, Imhof M E, Wunderlich H J. Structural software-based self-test of network-on-chip. In Proc. the 32nd VLSI Test Symposium, Apr. 2014. DOI: 10.1109/VTS.2014.6818754. [24] Cheng K T, Krishnakumar A S. Automatic functional test generation using the extended finite state machine model. In Proc. the 30th International Design Automation Conference, June 1993, pp.86–91. DOI: 10.1145/157485.164585. [25] Psarakis M, Gizopoulos D, Sanchez E, Reorda M S. Microprocessor software-based self-testing. IEEE Design & Test of Computers, 2010, 27(3): 4–19. DOI: 10.1109/MDT.2010.5. [26] Ganai M K, Gupta A. Accelerating high-level bounded model checking. In Proc. the 2006 International Conference on Computer Aided Design, Nov. 2006, pp.794–801. DOI: 10.1109/ICCAD.2006.320122. [27] Tupuri R S, Abraham J A. A novel functional test generation method for processors using commercial ATPG. In Proc. the 1997 International Test Conference, Nov. 1997, pp.743–752. DOI: 10.1109/TEST.1997.639687. [28] Zhang Y, Li H W, Li X W. Automatic test program generation using uting-trace-based constraint extraction for embedded processors. IEEE Trans. Very Large Scale Integration (VLSI) Systems, 2013, 27(7): 1220–1233. DOI: 10.1109/TVLSI.2012.2208130. [29] Negro V C, Goldstein L H. The generation of correlated multivariate samples for Monte Carlo simulation. IEEE Spectrum, 1968, 5(2): 5. DOI: 10.1109/MSPEC.1968.5214753. |
No related articles found! |
|
|