|
Journal of Computer Science and Technology ›› 2023, Vol. 38 ›› Issue (2): 289-297.doi: 10.1007/s11390-023-2544-z
Special Issue: Computer Architecture and Systems
• Special Section on Approximate Computing Circuits and Systems • Previous Articles Next Articles
Yu-Qin Dou (窦昱钦) and Cheng-Hua Wang (王成华)
[1]
Jiang H L, Santiago F J H, Mo H, Liu L B, Han J. Approximate arithmetic circuits: A survey, characterization, and recent applications. Proceedings of the IEEE, 2020, 108(12): 2108–2135. DOI: 10.1109/JPROC.2020.3006451. [2] Liu W Q, Cao T, Yin P P, Zhu Y Y, Wang C H, Swartzlander E E, Lombardi F. Design and analysis of approximate redundant binary multipliers. IEEE Trans. Computers, 2019, 68(6): 804–819. DOI: 10.1109/TC.2018.2890222. [3] Liu W Q, Qian L Y, Wang C H, Jiang H L, Han J, Lombardi F. Design of approximate radix-4 booth multipliers for error-tolerant computing. IEEE Trans. Computers, 2017, 66(8): 1435–1441. DOI: 10.1109/TC.2017.2672976. [4] Camus V, Cacciotti M, Schlachter J, Enz C. Design of approximate circuits by fabrication of false timing paths: The carry cut-back adder. IEEE Journal on Emerging and Selected Topics in Circuits and System, 2018, 8(4): 746–757. DOI: 10.1109/JETCAS.2018.2851749. [5] Dou Y Q, Wang C H, Gu C Y, O'Neill M, Liu W Q. Design and analysis of hardware Trojans in approximate circuits. Electronics Letters, 2022, 58(5): 197–199. DOI: 10.1049/ell2.12405. [6] Liu W Q, Lombardi F, Shulte M. A retrospective and prospective view of approximate computing. Proceedings of the IEEE, 2020, 108(3): 394–399. DOI: 10.1109/JPROC.2020.2975695. [7] Mittal S. A survey of techniques for approximate computing. ACM Computing Surveys, 2016, 48(4): Article No. 62. DOI: 10.1145/2893356. [8] Sidiroglou-Douskos S, Misailovic S, Hoffmann H, Rinard M. Managing performance vs. accuracy trade-offs with loop perforation. In Proc. the 19th ACM SIGSOFT Symposium and the 13th European Conference on FOUNDATIONS of Software Engineering, Sept. 2011, pp.124–134. DOI: 10.1145/2025113.2025133. [9] Esposito D, Strollo A G M, Napoli E, Caro D D, Petra N. Approximate multipliers based on new approximate compressors. IEEE Trans. Circuits and Systems I: Regular Papers, 2018, 65(12): 4169–4182. DOI: 10.1109/TCSI.2018.2839266. [10] Han J, Orshansky M. Approximate computing: An emerging paradigm for energy-efficient design. In Proc. the 18th IEEE European Test Symposium, May 2013. DOI: 10.1109/ETS.2013.6569370. [11] Mahdiani H R, Ahmadi A, Fakhraie S M, Lucas C. Bio-inspired imprecise computational blocks for efficient VLSI implementation of soft-computing applications. IEEE Trans. Circuits and Systems I: Regular Papers, 2010, 57(4): 850–862. DOI: 10.1109/TCSI.2009.2027626. [12] Waris H, Wang C H, Liu W Q. Hybrid low radix encoding-based approximate booth multipliers. IEEE Trans. Circuits and Systems II: Express Briefs, 2020, 67(12): 3367–3371. DOI: 10.1109/TCSII.2020.2975094. [13] Castro-Godínez J, Mateus-Vargas J, Shafique M, Henkel J. AxHLS: Design space exploration and high-level synthesis of approximate accelerators using approximate functional units and analytical models. In Proc. the 39th International Conference on Computer-Aided Design, Nov. 2020, Article No. 117. DOI: 10.1145/3400302.3415732. [14] Dou Y Q, Wang C H, Woods R, Liu W Q. ENAP: An efficient number-aware pruning framework for design space exploration of approximate configurations. IEEE Trans. Circuits Systems I: Regular Papers. DOI: 10.1109/TCSI.2023.3252483. [15] Karakoy M, Kislal O, Tang X L, Kandemir M T, Arunachalam M. Architecture-aware approximate computing. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2019, 3(2): Article No. 38. DOI: 10.1145/3341617.3326153. [16] Li C F, Luo W, Sapatnekar S S, Hu J. Joint precision optimization and high level synthesis for approximate computing. In Proc. the 52nd Annual Design Automation Conference, Jun. 2015, Article No. 104. DOI: 10.1145/2744769.2744863. [17] Sengupta D, Snigdha F S, Hu J, Sapatnekar S S. An analytical approach for error PMF characterization in approximate circuits. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 2019, 38(1): 70–83. DOI: 10.1109/TCAD.2018.2803626. [18] Castro-Godínez J, Esser S, Shafique M, Pagani S, Henkel J. Compiler-driven error analysis for designing approximate accelerators. In Proc. the 2018 Design, Automation & Test in Europe Conference & Exhibition, Mar. 2018, pp.1027–1032. DOI: 10.23919/DATE.2018.8342163. [19] Huang J, Lach J, Robins G. Analytic error modeling for imprecise arithmetic circuits. In Proc. the 2011 IEEE Workshop on Silicon Errors in Logic—System Effects, Mar. 2011, pp.64–69. [20] Mazahir S, Hasan O, Hafiz R, Shafique M, Henkel J. Probabilistic error modeling for approximate adders. IEEE Trans. Computers, 2017, 66(3): 515–530. DOI: 10.1109/TC.2016.2605382. [21] Mrazek V, Hrbacek R, Vasicek Z, Sekanina L. EvoApprox8b: Library of approximate adders and multipliers for circuit design and benchmarking of approximation methods. In Proc. the 2017 Design, Automation & Test in Europe Conference & Exhibition, Mar. 2017, pp.258–261. DOI: 10.23919/DATE.2017.7926993. [22] Martin E, Sentieys O, Dubois H, Philippe J L. GAUT: An architectural synthesis tool for dedicated signal processors. In Proc. EURO-DAC 93 and EURO-VHDL 93-European Design Automation Conference, Sept. 1993, pp.14–19. DOI: 10.1109/EURDAC.1993.410610. |
[1] | Zhen Wang, Rong-Chen Xu, Jia-Cheng Chen, and Jie Xiao. A Survey of Reliability Issues Related to Approximate Circuits [J]. Journal of Computer Science and Technology, 2023, 38(2): 273-288. |
|
|