|
Journal of Computer Science and Technology ›› 2023, Vol. 38 ›› Issue (2): 298-308.doi: 10.1007/s11390-023-2572-8
Special Issue: Computer Architecture and Systems
• Special Section on Approximate Computing Circuits and Systems • Previous Articles Next Articles
Ying Wu1 (吴 莹), Chen-Yi Wen1 (温晨怡), Xun-Zhao Yin1 (尹勋钊), and Cheng Zhuo1, 2, * (卓 成), Senior Member, IEEE
[1]
Atzori L, Iera A, Morabito G. The Internet of Things: A survey. Computer Networks, 2010, 54(15): 2787–2805. DOI: 10.1016/j.comnet.2010.05.010. [2] Zhuo C, Luo S H, Gan H L, Hu J, Shi Z G. Noise-aware DVFS for efficient transitions on battery-powered IoT devices. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(7): 1498–1510. DOI: 10.1109/tcad.2019.2917844. [3] Wen C Y, Dong X, Chen B X, Tida U R, Shi Y Y, Zhuo C. Magnetic core TSV-inductor design and optimization for on-chip DC-DC converter. ACM Trans. Design Automation of Electronic Systems, 2022, 27(5): Article No. 52. DOI: 10.1145/3507700. [4] Gupta V, Mohapatra D, Park S P, Raghunathan A, Roy K. IMPACT: IMPrecise adders for low-power approximate computing. In Proc. the 2011 IEEE/ACM International Symposium on Low Power Electronics and Design, Aug. 2011, pp.409–414. DOI: 10.1109/ISLPED.2011.5993675. [5] Han J, Orshansky M. Approximate computing: An emerging paradigm for energy-efficient design. In Proc. the 18th IEEE European Test Symposium, May 2013. DOI: 10.1109/ETS.2013.6569370. [6] Imani M, Rahimi A, Rosing T S. Resistive configurable associative memory for approximate computing. In Proc. the 2016 Design, Automation & Test in Europe Conference & Exhibition, Mar. 2016, pp.1327–1332. DOI: 10.3850/9783981537079_0454. [7] Liu W Q, Lombardi F, Shulte M. A retrospective and prospective view of approximate computing. Proceedings of the IEEE, 2020, 108(3): 394–399. DOI: 10.1109/jproc.2020.2975695. [8] Venkataramani S, Chippa V K, Chakradhar S T, Roy K, Raghunathan A. Quality programmable vector processors for approximate computing. In Proc. the 46th Annual IEEE/ACM International Symposium on Microarchitecture, Dec. 2013. DOI: 10.1145/2540708.2540710. [9] Deng J N, Shi Z G, Zhuo C. Energy-efficient real-time UAV object detection on embedded platforms. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(10): 3123–3127. DOI: 10.1109/tcad.2019.2957724. [10] Mitchell J N. Computer multiplication and division using binary logarithms. IRE Trans. Electronic Computers, 1962, EC-11(4): 512–517. DOI: 10.1109/tec.1962.5219391. [11] Lim Y C. Single-precision multiplier with reduced circuit complexity for signal processing applications. IEEE Trans. Computers, 1992, 41(10): 1333–1336. DOI: 10.1109/12.166611. [12] Schulte M J, Swartzlander E E. d multiplication with correction constant. In Proc. the 1993 IEEE Workshop on VLSI Signal Processing, Oct. 1993, pp.388–396. DOI: 10.1109/vlsisp.1993.404467. [13] Ansari M S, Cockburn B F, Han J. An improved logarithmic multiplier for energy-efficient neural computing. IEEE Trans. Computers, 2020, 70(4): 614–625. DOI: 10.1109/tc.2020.2992113. [14] Liu W Q, Xu J H, Wang D Y, Wang C H, Montuschi P, Lombardi F. Design and evaluation of approximate logarithmic multipliers for low power error-tolerant applications. IEEE Trans. Circuits and Systems I: Regular Papers, 2018, 65(9): 2856–2868. DOI: 10.1109/tcsi.2018.2792902. [15] Esposito D, Strollo A G M, Napoli E, De Caro D, Petra N. Approximate multipliers based on new approximate compressors. IEEE Trans. Circuits and Systems I: Regular Papers, 2018, 65(12): 4169–4182. DOI: 10.1109/tcsi.2018.2839266. [16] Ha M, Lee S. Multipliers with approximate 4-2 compressors and error recovery modules. IEEE Embedded Systems Letters, 2018, 10(1): 6–9. DOI: 10.1109/les.2017.2746084. [17] Hashemi S, Bahar R I, Reda S. DRUM: A dynamic range unbiased multiplier for approximate applications. In Proc. the 2015 IEEE/ACM International Conference on Computer-Aided Design, Nov. 2015, pp.418–425. DOI: 10.1109/iccad.2015.7372600. [18] Kulkarni P, Gupta P, Ercegovac M. Trading accuracy for power with an underdesigned multiplier architecture. In Proc. the 24th International Conference on VLSI Design, Jan. 2011, pp.346–351. DOI: 10.1109/vlsid.2011.51. [19] Narayanamoorthy S, Moghaddam H A, Liu Z H, Park T, Kim N S. Energy-efficient approximate multiplication for digital signal processing and classification applications. IEEE Trans. Very Large Scale Integration (VLSI) Systems, 2015, 23(6): 1180–1184. DOI: 10.1109/tvlsi.2014.2333366. [20] Tung C W, Huang S H. Low-power high-accuracy approximate multiplier using approximate high-order compressors. In Proc. the 2nd International Conference on Communication Engineering and Technology, Apr. 2019, pp.163–167. DOI: 10.1109/iccet.2019.8726875. [21] Venkatachalam S, Ko S B. Design of power and area efficient approximate multipliers. IEEE Trans. Very Large Scale Integration (VLSI) Systems, 2017, 25(5): 1782–1786. DOI: 10.1109/tvlsi.2016.2643639. [22] George J, Marr B, Akgul B E S, Palem K V. Probabilistic arithmetic and energy efficient embedded signal processing. In Proc. the 2006 International Conference on Compilers, Architecture and Synthesis for Embedded Systems, Oct. 2006, pp.158–168. DOI: 10.1145/1176760.1176781. [23] Schlachter J, Camus V, Enz C, Palem K V. Automatic generation of inexact digital circuits by gate-level pruning. In Proc. the 2015 IEEE International Symposium on Circuits and Systems, May 2015, pp.173–176. DOI: 10.1109/iscas.2015.7168598. [24] Chen C T, Qian W K, Imani M, Yin X Z, Zhuo C. PAM: A piecewise-linearly-approximated floating-point multiplier with unbiasedness and configurability. IEEE Trans. Computers, 2022, 71(10): 2473–2486. DOI: 10.1109/tc.2021.3131850. [25] Oklobdzija V G. An algorithmic and novel design of a leading zero detector circuit: Comparison with logic synthesis. IEEE Trans. Very Large Scale Integration (VLSI) Systems, 1994, 2(1): 124–128. DOI: 10.1109/92.273153. [26] Wallace C S. A suggestion for a fast multiplier. IEEE Trans. Electronic Computers, 1964, EC-13(1): 14–17. DOI: 10.1109/pgec.1964.263830. |
[1] | Tong Li, Hong-Lan Jiang, Hai Mo, Jie Han, Lei-Bo Liu, and Zhi-Gang Mao. Approximate Processing Element Design and Analysis for the Implementation of CNN Accelerators [J]. Journal of Computer Science and Technology, 2023, 38(2): 309-327. |
[2] | Hao-Hua Que, Yu Jin, Tong Wang, Ming-Kai Liu, Xing-Hua Yang, and Fei Qiao. A Survey of Approximate Computing: From Arithmetic Units Design to High-Level Applications [J]. Journal of Computer Science and Technology, 2023, 38(2): 251-272. |
[3] | Yuan-Hu Cheng, Li-Bo Huang, Yi-Jun Cui, Sheng Ma, Yong-Wen Wang, and Bing-Cai Sui. RV16: An Ultra-Low-Cost Embedded RISC-V Processor Core [J]. Journal of Computer Science and Technology, 2022, 37(6): 1307-1319. |
[4] | Wen-Li Zhang, Ke Liu, Yi-Fan Shen, Ya-Zhu Lan, Hui Song, Ming-Yu Chen, Yuan-Fei Chen. Labeled Network Stack: A High-Concurrency and Low-Tail Latency Cloud Server Framework for Massive IoT Devices [J]. Journal of Computer Science and Technology, 2020, 35(1): 179-193. |
[5] | Chiou-Yng Lee, Yung-Hui Chen, Che-Wun Chiou, and Jim-Min Lin. Unified Parallel Systolic Multiplier Over GF(2^m) [J]. , 2007, 22(1): 28-38 . |
[6] | Chiou-Yng Lee, Jenn-Shyong Horng, and I-Chang Jou. Low-Complexity Bit-Parallel Multiplier over GF(2$^m$) Using Dual Basis Representation [J]. , 2006, 21(6): 887-892 . |
[7] | HOU WenTing (侯文婷), HONG XianLong (洪先龙), WU WeiMin (吴为民) and CAI YiCi (蔡懿慈). FaSa: A Fast and Stable Quadratic Placement Algorithm [J]. , 2003, 18(3): 0-0. |
[8] | CHEN YiSong (陈毅松), WANG GuoPing (汪国平) and DONG ShiHai (董士海). Further Improvement on Dynamic Programming for Optimal Bit Allocation [J]. , 2003, 18(1): 0-0. |
[9] | WANG Jiaqi (王家琦), TAO Qing (陶卿) and WANG Jue (王珏). Kernel Projection Algorithm for Large-Scale SVM Problems [J]. , 2002, 17(5): 0-0. |
|
|