Journal of Computer Science and Technology

   

Spatio-Temporal Location Recommendation for Urban Facility Placement via Graph Convolutional and Recurrent Networks

Pu Wang1 (王璞), Jian-Jiang Lu2 (陆剑江), Wei Chen1 (陈伟), Member, CCF, ACM, Peng-Peng Zhao1 (赵朋朋), Member, CCF, ACM, and Lei Zhao1,∗ (赵雷), Member, CCF, ACM   

  1. 1Institute of Artificial Intelligence, School of Computer Science and Technology, Soochow University, Suzhou 215006, China
    2Department of Data Resource and Information Development, Soochow University, Suzhou 215006, China
  • Received:2022-06-24 Revised:2023-02-19 Accepted:2023-03-07
  • Contact: Lei Zhao E-mail:zhaol@suda.edu.cn
  • About author:Lei Zhao is a professor with the School of Computer Science and Technology at Soochow University, Suzhou. He received his Ph.D. degree in computer science from Soochow University, Suzhou, in 2006. His recent research is to analyze large graph database in an effective, efficient, and secure way.

The ability to recommend candidate locations for service facility placement is crucial for the success of urban planning. Whether a location is suitable for establishing new facilities is largely determined by its potential popularity. However, it is a non-trivial task to predict popularity of candidate locations due to three significant challenges: 1) the spatio-temporal behavior correlations of urban dwellers, 2) the spatial correlations between candidate locations and existing facilities, 3) the temporal auto-correlations of locations themselves. To this end, we propose a novel semi-supervised learn- ing model, Spatio-Temporal Graph Convolutional and Recurrent Networks, aiming for popularity prediction and location recommendation. Specifically, we first partition the urban space into spatial neighborhood regions centered by locations, extract the corresponding features, and develop the location correlation graph. Next, a contextual graph convolution module based on attention mechanism is introduced to incorporate local and global spatial correlations of locations. A recurrent neural network is proposed to capture temporal dependencies between locations. Furthermore, we adopt a location popularity approximation block to estimate the missing popularity from both spatial and temporal domains. Finally, the overall implicit characteristics are concatenated and then fed into the recurrent neural network to obtain the ultimate popularity. The extensive experiments on two real-world datasets demonstrate the superiority of the proposed model compared with state-of-the-art baselines. 


中文摘要

POI服务设施的选址规划是城市计算的重要内容,良好的选址能为居民的工作生活带来便利,提高POI设施的服务效率,还能缓解城市的交通和环境等压力。现阶段大部分城市都已经发展到了一定的阶段,相应的服务设施都存在于城市的不同区域中。因此,选址工作不仅要考虑时空域上城市居民对候选地址的影响力,还要综合分析已经存在的服务设施对候选地址的影响效应,以及新建设施对现存设施的影响等因素。
为此,本文提出了半监督环境下的选址模型STGCRN。该模型首先以地址为中心,将城市区域分块划分并提取对应的多维度特征,以此为基础构建地址关联图。然后,引入基于多头注意力机制的上下文图卷积模块对地址设施的空间关联关系建模,捕获地址的局部空间相关性和全局空间相关性,并采用循环神经网络对地址设施的动态时间依赖关系建模,捕获周期性时间片内流行度的前后依赖性。最后,分别从空间域和时间域预估地址缺失的流行度分布,使用熵机制融合后,与时空特征一并再次送入循环神经网络模块,获得最终的候选地址流行度用于选址推荐。
在两个实验数据集中的共计6类具体服务设施上,本文所提预测模型STGCRN的性能都优于其他的比较算法。因为STGCRN重点分析和提取了城市区域内用户群体的时空轨迹特征和社交关联等特征,在半监督的环境下,采用基于多头注意力机制的上下文图卷积模块建模地址的空间局部相关性和空间全局相关性,并使用LSTM模块捕捉地址的动态时间依赖关系,从而解决了候选地址流行度预测中所面临的用户自相关、空间自相关和时间自相关等难题。
本文充分挖掘了用户签到、行程轨迹和社交行为等数据,与时空域结合得到的预测结果准确科学,在此基础上根据预测结果进行的增量选址,效率高、效果好,本研究可以为各类城市服务设施的选址提供理论支撑和算法参考。

Key words: location recommendation; popularity prediction; spatio-temporal correlation; deep learning;

[1] Adam Weingram, Yuke Li , Hao Qi, Darren Ng, Liuyao Dai, and Xiaoyi Lu. xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning [J]. Journal of Computer Science and Technology, 2023, 38(1): 166-195.
[2] Cheng-Li Peng and Jia-Yi Ma. Real-Time Semantic Segmentation via an Efficient Multi-Column Network [J]. Journal of Computer Science and Technology, 2022, 37(6): 1478-1491.
[3] Lei Liu, Xiu Ma, Hua-Xiao Liu, Guang-Li Li, and Lei Liu. FlexPDA: A Flexible Programming Framework for Deep Learning Accelerators [J]. Journal of Computer Science and Technology, 2022, 37(5): 1200-1220.
[4] Xin Zhang, Siyuan Lu, Shui-Hua Wang, Xiang Yu, Su-Jing Wang, Lun Yao, Yi Pan, and Yu-Dong Zhang. Diagnosis of COVID-19 Pneumonia via a Novel Deep Learning Architecture [J]. Journal of Computer Science and Technology, 2022, 37(2): 330-343.
[5] Songjie Niu, Shimin Chen. TransGPerf: Exploiting Transfer Learning for Modeling Distributed Graph Computation Performance [J]. Journal of Computer Science and Technology, 2021, 36(4): 778-791.
[6] Sheng-Luan Hou, Xi-Kun Huang, Chao-Qun Fei, Shu-Han Zhang, Yang-Yang Li, Qi-Lin Sun, Chuan-Qing Wang. A Survey of Text Summarization Approaches Based on Deep Learning [J]. Journal of Computer Science and Technology, 2021, 36(3): 633-663.
[7] Lan Chen, Juntao Ye, Xiaopeng Zhang. Multi-Feature Super-Resolution Network for Cloth Wrinkle Synthesis [J]. Journal of Computer Science and Technology, 2021, 36(3): 478-493.
[8] Yu-Jie Yuan, Yukun Lai, Tong Wu, Lin Gao, Li-Gang Liu. A Revisit of Shape Editing Techniques: From the Geometric to the Neural Viewpoint [J]. Journal of Computer Science and Technology, 2021, 36(3): 520-554.
[9] Wei Du, Yu Sun, Hui-Min Bao, Liang Chen, Ying Li, Yan-Chun Liang. DeepHBSP: A Deep Learning Framework for Predicting Human Blood-Secretory Proteins Using Transfer Learning [J]. Journal of Computer Science and Technology, 2021, 36(2): 234-247.
[10] Jun Gao, Paul Liu, Guang-Di Liu, Le Zhang. Robust Needle Localization and Enhancement Algorithm for Ultrasound by Deep Learning and Beam Steering Methods [J]. Journal of Computer Science and Technology, 2021, 36(2): 334-346.
[11] Hua Chen, Juan Liu, Qing-Man Wen, Zhi-Qun Zuo, Jia-Sheng Liu, Jing Feng, Bao-Chuan Pang, Di Xiao. CytoBrain: Cervical Cancer Screening System Based on Deep Learning Technology [J]. Journal of Computer Science and Technology, 2021, 36(2): 347-360.
[12] Nuo Qun, Hang Yan, Xi-Peng Qiu, Xuan-Jing Huang. Chinese Word Segmentation via BiLSTM+Semi-CRF with Relay Node [J]. Journal of Computer Science and Technology, 2020, 35(5): 1115-1126.
[13] Andrea Caroppo, Alessandro Leone, Pietro Siciliano. Comparison Between Deep Learning Models and Traditional Machine Learning Approaches for Facial Expression Recognition in Ageing Adults [J]. Journal of Computer Science and Technology, 2020, 35(5): 1127-1146.
[14] Dun Liang, Yuan-Chen Guo, Shao-Kui Zhang, Tai-Jiang Mu, Xiaolei Huang. Lane Detection: A Survey with New Results [J]. Journal of Computer Science and Technology, 2020, 35(3): 493-505.
[15] Zheng Zeng, Lu Wang, Bei-Bei Wang, Chun-Meng Kang, Yan-Ning Xu. Denoising Stochastic Progressive Photon Mapping Renderings Using a Multi-Residual Network [J]. Journal of Computer Science and Technology, 2020, 35(3): 506-521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!

ISSN 1000-9000(Print)

         1860-4749(Online)
CN 11-2296/TP

Home
Editorial Board
Author Guidelines
Subscription
Journal of Computer Science and Technology
Institute of Computing Technology, Chinese Academy of Sciences
P.O. Box 2704, Beijing 100190 P.R. China
Tel.:86-10-62610746
E-mail: jcst@ict.ac.cn
 
  Copyright ©2015 JCST, All Rights Reserved