<table class="reference-tab" style="background-color:#FFFFFF;width:914.104px;color:#333333;font-family:Calibri, Arial, 微软雅黑, "font-size:16px;">
<tbody>
<tr class="document-box" id="b1">
<td valign="top" class="td1">
[1]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Sun C C, Shen D R. Mixed hierarchical networks for deep entity matching. <i>Journal of Computer Science and Technology</i>, 2021, 36(4): 822–838. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1007/s11390-021-1321-0" target="_blank">10.1007/s11390-021-1321-0</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b2">
<td valign="top" class="td1">
[2]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Li B Z, Min S, Iyer S, Mehdad Y, Yin W T. Efficient one-pass end-to-end entity linking for questions. In <i>Proc</i>. <i>the 2020 Conference on Empirical Methods in Natural Language Processing</i>, Nov. 2020, pp.6433–6441. DOI: <a href="http://dx.doi.org/10.18653/v1/2020.emnlp-main.522">10.18653/v1/2020.emnlp-main.522</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b3">
<td valign="top" class="td1">
[3]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Chen K, Shen G H, Huang Z Q, Wang H J. Improved entity linking for simple question answering over knowledge graph. <i>International Journal of Software Engineering and Knowledge Engineering</i>, 2021, 31(1): 55–80. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1142/S0218194021400039" target="_blank">10.1142/S0218194021400039</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b4">
<td valign="top" class="td1">
[4]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Amplayo R K, Lim S, Hwang S W. Entity commonsense representation for neural abstractive summarization. In <i>Proc</i>. <i>the 2018 Conference of the North American Chapter of the Association for Computational Linguistics</i>: <i>Human Language Technologies</i>, Jun. 2018, pp.697–707. DOI: <a href="http://dx.doi.org/10.18653/v1/N18-1064">10.18653/v1/N18-1064</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b5">
<td valign="top" class="td1">
[5]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Shen W, Wang J Y, Han J W. Entity linking with a knowledge base: Issues, techniques, and solutions. <i>IEEE Trans. Knowledge and Data Engineering</i>, 2015, 27(2): 443–460. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TKDE.2014.2327028" target="_blank">10.1109/TKDE.2014.2327028</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b6">
<td valign="top" class="td1">
[6]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Li M Y, Xing Y Q, Kong F, Zhou G D. Towards better entity linking. <i>Frontiers of Computer Science</i>, 2022, 16(2): 162308. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1007/s11704-020-0192-9" target="_blank">10.1007/s11704-020-0192-9</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b7">
<td valign="top" class="td1">
[7]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Fu J L, Qiu J, Guo Y L, Li L. Entity linking and name disambiguation using SVM in Chinese micro-blogs. In <i>Proc</i>. <i>the 11th International Conference on Natural Computation</i>, Aug. 2015, pp.468–472. DOI: <a href="http://dx.doi.org/10.1109/ICNC.2015.7378034">10.1109/ICNC.2015.7378034</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b8">
<td valign="top" class="td1">
[8]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Huang D C, Wang J L. An approach on Chinese microblog entity linking combining Baidu encyclopaedia and word2vec. <i>Procedia Computer Science</i>, 2017, 111: 37–45. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1016/j.procs.2017.06.007" target="_blank">10.1016/j.procs.2017.06.007</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b9">
<td valign="top" class="td1">
[9]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Zeng W X, Tang J Y, Zhao X. Entity linking on Chinese microblogs via deep neural network. <i>IEEE Access</i>, 2018, 6: 25908–25920. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/ACCESS.2018.2833153" target="_blank">10.1109/ACCESS.2018.2833153</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b10">
<td valign="top" class="td1">
[10]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Ma C F, Sha Y, Tan J L, Guo L, Peng H L. Chinese social media entity linking based on effective context with topic semantics. In <i>Proc</i>. <i>the 43rd Annual Computer Software and Applications Conference</i>, Jul. 2019, pp.386–395. DOI: <a href="http://dx.doi.org/10.1109/COMPSAC.2019.00063">10.1109/COMPSAC.2019.00063</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b11">
<td valign="top" class="td1">
[11]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Chen T Q, Guestrin C. XGBoost: A scalable tree boosting system. In <i>Proc</i>. <i>the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining</i>, Aug. 2016, pp.785–794. DOI: <a href="http://dx.doi.org/10.1145/2939672.2939785">10.1145/2939672.2939785</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b12">
<td valign="top" class="td1">
[12]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Moro A, Raganato A, Navigli R. Entity linking meets word sense disambiguation: A unified approach. <i>Trans. Association for Computational Linguistics</i>, 2014, 2: 231–244. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1162/tacl_a_00179" target="_blank">10.1162/tacl_a_00179</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b13">
<td valign="top" class="td1">
[13]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Khosrovian K, Pfahl D, Garousi V. GENSIM 2.0: A customizable process simulation model for software process evaluation. In <i>Proc</i>. <i>the 2008 International Conference on Software Process</i>, May 2008, pp.294–306. DOI: <a href="http://dx.doi.org/10.1007/978-3-540-79588-9_26">10.1007/978-3-540-79588-9_26</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b14">
<td valign="top" class="td1">
[14]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Hochreiter S, Schmidhuber J. Long short-term memory. <i>Neural Computation</i>, 1997, 9(8): 1735–1780. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1162/neco.1997.9.8.1735" target="_blank">10.1162/neco.1997.9.8.1735</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b15">
<td valign="top" class="td1">
[15]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Phan M C, Sun A X, Tay Y, Han J L, Li C L. NeuPL: Attention-based semantic matching and pair-linking for entity disambiguation. In <i>Proc</i>. <i>the 2017 ACM Conference on Information and Knowledge Management</i>, Nov. 2017, pp.1667–1676. DOI: <a href="http://dx.doi.org/10.1145/3132847.3132963">10.1145/3132847.3132963</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b16">
<td valign="top" class="td1">
[16]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Zeng W X, Zhao X, Tang J Y, Tan Z, Huang X Q. CLEEK: A Chinese long-text corpus for entity linking. In <i>Proc</i>. <i>the 12th Language Resources and Evaluation Conference</i>, May 2020, pp.2026–2035. DOI: <a href="http://dx.doi.org/10.1145/3132847.3132963">10.1145/3132847.3132963</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b17">
<td valign="top" class="td1">
[17]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Lei K, Zhang B, Liu Y, Deng Y, Zhang D Y, Shen Y. A knowledge graph based solution for entity discovery and linking in open-domain questions. In <i>Proc</i>. <i>the 2nd International Conference on Smart Computing and Communication</i>, Dec. 2017, pp.181–190. DOI: <a href="http://dx.doi.org/10.1007/978-3-319-73830-7_19">10.1007/978-3-319-73830-7_19</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b18">
<td valign="top" class="td1">
[18]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Inan E, Dikenelli O. A sequence learning method for domain-specific entity linking. In <i>Proc</i>. <i>the 7th Named Entities Workshop</i>, Jul. 2018, pp.14–21. DOI: <a href="http://dx.doi.org/10.18653/v1/W18-2403">10.18653/v1/W18-2403</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b19">
<td valign="top" class="td1">
[19]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Logeswaran L, Chang M W, Lee K, Toutanova K, Devlin J, Lee H. Zero-shot entity linking by reading entity descriptions. In <i>Proc</i>. <i>the 57th Annual Meeting of the Association for Computational Linguistics</i>, Jul. 2019, pp.3449–3460. DOI: <a href="http://dx.doi.org/10.18653/v1/P19-1335">10.18653/v1/P19-1335</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b20">
<td valign="top" class="td1">
[20]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Chen L H, Varoquaux G, Suchanek F M. A lightweight neural model for biomedical entity linking. <i>Proceedings of the AAAI Conference on Artificial Intelligence</i>, 2021, 35(14): 12657–12665. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1609/aaai.v35i14.17499" target="_blank">10.1609/aaai.v35i14.17499</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b21">
<td valign="top" class="td1">
[21]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Dong Z D, Dong Q, Hao C L. HowNet and its computation of meaning. In <i>Proc</i>. <i>the 23rd International Conference on Computational Linguistics</i>: <i>Demonstrations</i>, Aug. 2010, pp.53–56. DOI: <a href="http://dx.doi.org/10.5555/1944284.1944298" target="_blank">10.5555/1944284.1944298</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b22">
<td valign="top" class="td1">
[22]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Miller G A. WordNet: A lexical database for English. <i>Communications of the ACM</i>, 1995, 38(11): 39–41. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1145/219717.219748" target="_blank">10.1145/219717.219748</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b23">
<td valign="top" class="td1">
[23]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Pilehvar M T, Collier N. De-conflated semantic representations. In <i>Proc</i>. <i>the 2016 Conference on Empirical Methods in Natural Language Processing</i>, Nov. 2016, pp.1680–1690. DOI: <a href="http://dx.doi.org/10.18653/v1/D16-1174">10.18653/v1/D16-1174</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b24">
<td valign="top" class="td1">
[24]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Lee Y Y, Yen T Y, Huang H H, Shiue Y T, Chen H H. GenSense: A generalized sense retrofitting model. In <i>Proc</i>. <i>the 27th International Conference on Computational Linguistics</i>, Aug. 2018, pp.1662-1671.
</div>
</td>
</tr>
<tr class="document-box" id="b25">
<td valign="top" class="td1">
[25]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Ramprasad S, Maddox J. CoKE: Word sense induction using contextualized knowledge embeddings. In <i>Proc</i>. <i>the 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering</i>, Mar. 2019.
</div>
</td>
</tr>
<tr class="document-box" id="b26">
<td valign="top" class="td1">
[26]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Scarlini B, Pasini T, Navigli R. SensEmBERT: Context-enhanced sense embeddings for multilingual word sense disambiguation. <i>Proceedings of the AAAI Conference on Artificial Intelligence</i>, 2020, 34(5): 8758–8765. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1609/aaai.v34i05.6402" target="_blank">10.1609/aaai.v34i05.6402</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b27">
<td valign="top" class="td1">
[27]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Eyal M, Sadde S, Taub-Tabib H, Goldberg Y. Large scale substitution-based word sense induction. In <i>Proc</i>. <i>the 60th Annual Meeting of the Association for Computational Linguistics</i>, May 2022, pp.4738–4752. DOI: <a href="http://dx.doi.org/10.18653/v1/2022.acl-long.325">10.18653/v1/2022.acl-long.325</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b28">
<td valign="top" class="td1">
[28]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Neelakantan A, Shankar J, Passos A, McCallum A. Efficient non-parametric estimation of multiple embeddings per word in vector space. In <i>Proc</i>. <i>the 2014 Conference on Empirical Methods in Natural Language Processing</i>, Oct. 2014, pp.1059–1069. DOI: <a href="http://dx.doi.org/10.3115/v1/D14-1113">10.3115/v1/D14-1113</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b29">
<td valign="top" class="td1">
[29]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Pelevina M, Arefiev N, Biemann C, Panchenko A. Making sense of word embeddings. In <i>Proc</i>. <i>the 1st Workshop on Representation Learning for NLP</i>, Aug. 2016, pp.174–183. DOI: <a href="http://dx.doi.org/10.18653/v1/W16-1620">10.18653/v1/W16-1620</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b30">
<td valign="top" class="td1">
[30]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Chang H S, Agrawal A, Ganesh A, Desai A, Mathur V, Hough A, McCallum A. Efficient graph-based word sense induction by distributional inclusion vector embeddings. In <i>Proc</i>. <i>the 12th Workshop on Graph-Based Methods for Natural Language Processing</i>, Jun. 2018, pp.38–48. DOI: <a href="http://dx.doi.org/10.18653/v1/W18-1706">10.18653/v1/W18-1706</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b31">
<td valign="top" class="td1">
[31]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Han S Z, Shirai K. Unsupervised word sense disambiguation based on word embedding and collocation. In <i>Proc</i>. <i>the 13th International Conference on Agents and Artificial Intelligence</i>, Feb. 2021, pp.1218–1225. DOI: <a href="http://dx.doi.org/10.5220/0010380112181225">10.5220/0010380112181225</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b32">
<td valign="top" class="td1">
[32]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Chen H H, Jin H. Finding and evaluating the community structure in semantic peer-to-peer overlay networks. <i>Science China Information Sciences</i>, 2011, 54(7): 1340–1351. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1007/s11432-011-4296-6" target="_blank">10.1007/s11432-011-4296-6</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b33">
<td valign="top" class="td1">
[33]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Gao W, Wong K F, Xia Y Q, Xu R F. Clique percolation method for finding naturally cohesive and overlapping document clusters. In <i>Proc</i>. <i>the 21st International Conference on Computer Processing of Oriental Languages</i>, Dec. 2006, pp.97–108. DOI: <a href="http://dx.doi.org/10.1007/11940098_10">10.1007/11940098_10</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b34">
<td valign="top" class="td1">
[34]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Gibbons T R, Mount S M, Cooper E D, Delwiche C F. Evaluation of BLAST-based edge-weighting metrics used for homology inference with the Markov Clustering algorithm. <i>BMC Bioinformatics</i>, 2015, 16: 218. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1186/s12859-015-0625-x" target="_blank">10.1186/s12859-015-0625-x</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b35">
<td valign="top" class="td1">
[35]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Brin S, Page L. Reprint of: The anatomy of a large-scale hypertextual web search engine. <i>Computer Networks</i>, 2012, 56(18): 3825–3833. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1016/j.comnet.2012.10.007" target="_blank">10.1016/j.comnet.2012.10.007</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b36">
<td valign="top" class="td1">
[36]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Yoshua B, Olivier D, Nicolas Le R. Label propagation and quadratic criterion. <i>Semi-Supervised Learning</i>, 2006: 192–216. DOI: <a href="http://dx.doi.org/10.7551/mitpress/9780262033589.003.0011">10.7551/mitpress/9780262033589.003.0011</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b37">
<td valign="top" class="td1">
[37]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Serban O, Castellano G, Pauchet A, Rogozan A, Pecuchet J P. Fusion of smile, valence and NGram features for automatic affect detection. In <i>Proc</i>. <i>the 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction</i>, Sept. 2013, pp.264–269. DOI: <a href="http://dx.doi.org/10.1109/ACE285A1.2013.50">10.1109/ACⅡ.2013.50</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b38">
<td valign="top" class="td1">
[38]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Jin H, Zhang Z B, Yuan P P. Improving Chinese word representation using four corners features. <i>IEEE Trans. Big Data</i>, 2022, 8(4): 982–993. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TBDATA.2021.3106582" target="_blank">10.1109/TBDATA.2021.3106582</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b39">
<td valign="top" class="td1">
[39]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Huang E H, Socher R, Manning C D, Ng A Y. Improving word representations via global context and multiple word prototypes. In <i>Proc</i>. <i>the 50th Annual Meeting of the Association for Computational Linguistics</i>, Jul. 2012, pp.873-882.
</div>
</td>
</tr>
<tr class="document-box" id="b40">
<td valign="top" class="td1">
[40]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Biemann C. Turk bootstrap word sense inventory 2.0: A large-scale resource for lexical substitution. In <i>Proc</i>. <i>the 8th International Conference on Language Resources and Evaluation</i>, May 2012, pp.4038-4042.
</div>
</td>
</tr>
<tr class="document-box" id="b41">
<td valign="top" class="td1">
[41]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Pennington J, Socher R, Manning C. GloVe: Global vectors for word representation. In <i>Proc</i>. <i>the 2014 Conference on Empirical Methods in Natural Language Processing</i>, Oct. 2014, pp.1532–1543. DOI: <a href="http://dx.doi.org/10.3115/v1/D14-1162">10.3115/v1/D14-1162</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b42">
<td valign="top" class="td1">
[42]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Ilić S, Marrese-Taylor E, Balazs J A, Matsuo Y. Deep contextualized word representations for detecting sarcasm and irony. In <i>Proc</i>. <i>the 9th Workshop on Computational Approaches to Subjectivity</i>, <i>Sentiment and Social Media Analysis</i>, Oct. 2018, pp.2–7. DOI: <a href="http://dx.doi.org/10.18653/v1/w18-6202">10.18653/v1/w18-6202</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b43">
<td valign="top" class="td1">
[43]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Liu Y J, Che W X, Wang Y X, Zheng B, Qin B, Liu T. Deep contextualized word embeddings for universal dependency parsing. <i>ACM Trans</i>. <i>Asian and Low-Resource Language Information Processing</i>, 2020, 19(1): 9. DOI: <a href="http://dx.doi.org/10.1145/3326497">10.1145/3326497</a>.
</div>
</td>
</tr>
</tbody>
</table> |