<table class="reference-tab" style="background-color:#FFFFFF;width:914.104px;color:#333333;font-family:Calibri, Arial, 微软雅黑, "font-size:16px;">
<tbody>
<tr class="document-box" id="b1">
<td valign="top" class="td1">
[1]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Farnoosh A, Azari B, Ostadabbas S. Deep switching auto-regressive factorization: Application to time series forecasting. <i>Proceedings of the AAAI Conference on Artificial Intelligence</i>, 2021, 35(8): 7394–7403. DOI: <a href="http://dx.doi.org/10.1609/aaai.v35i8.16907">10.1609/aaai.v35i8.16907</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b2">
<td valign="top" class="td1">
[2]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Rasul K, Seward C, Schuster I, Vollgraf R. Autoregressive denoising diffusion models for multivariate probabilistic time series forecasting. In <i>Proc</i>. <i>the 38th International Conference on Machine Learning</i>, Jul. 2021, pp.8857–8868.
</div>
</td>
</tr>
<tr class="document-box" id="b3">
<td valign="top" class="td1">
[3]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Pan Q Y, Hu W B, Chen N. Two birds with one stone: Series saliency for accurate and interpretable multivariate time series forecasting. In <i>Proc. the 30th International Joint Conference on Artificial Intelligence</i>, Aug. 2021, pp.2884–2891. DOI: <a href="http://dx.doi.org/10.24963/ijcai.2021/397">10.24963/ijcai.2021/397</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b4">
<td valign="top" class="td1">
[4]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Lee D, Lee S, Yu H. Learnable dynamic temporal pooling for time-series classification. <i>Proceedings of the AAAI Conference on Artificial Intelligence</i>, 2021, 35(9): 8288–8296. DOI: <a href="http://dx.doi.org/10.1609/aaai.v35i9.17008">10.1609/aaai.v35i9.17008</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b5">
<td valign="top" class="td1">
[5]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Mbouopda M F. Uncertain time series classification. In <i>Proc</i>. <i>the 30th International Joint Conference on Artificial Intelligence</i>, Aug. 2021, pp.4903–4904. DOI: <a href="http://dx.doi.org/10.24963/ijcai.2021/683">10.24963/ijcai.2021/683</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b6">
<td valign="top" class="td1">
[6]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Yue Z H, Wang Y J, Duan J Y, Yang T M, Huang C R, Tong Y H, Xu B X. TS2Vec: Towards universal representation of time series. <i>Proceedings of the AAAI Conference on Artificial Intelligence</i>, 2022, 36(8): 8980–8987. DOI: <a href="http://dx.doi.org/10.1609/aaai.v36i8.20881">10.1609/aaai.v36i8.20881</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b7">
<td valign="top" class="td1">
[7]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Eldele E, Ragab M, Chen Z H, Wu M, Kwoh C K, Li X L, Guan C T. Time-series representation learning via temporal and contextual contrasting. In <i>Proc</i>. <i>the 30th International Joint Conference on Artificial Intelligence</i>, Aug. 2021, pp.2352–2359. <a href="https://doi.org/10.24963/ijcai.2021/324">DOI: </a><a class="mainColor ref-doi" href="http://dx.doi.org/10.24963/ijcai.2021/3243C/a3E" target="_blank">10.24963/ijcai.2021/324</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b8">
<td valign="top" class="td1">
[8]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Deng A L, Hooi B. Graph neural network-based anomaly detection in multivariate time series. <i>Proceedings of the AAAI Conference on Artificial Intelligence</i>, 2021, 35(5): 4027–4035. DOI: <a href="http://dx.doi.org/10.1609/aaai.v35i5.16523">10.1609/aaai.v35i5.16523</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b9">
<td valign="top" class="td1">
[9]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Kim S, Choi K, Choi H S, Lee B, Yoon S. Towards a rigorous evaluation of time-series anomaly detection. <i>Proceedings of the AAAI Conference on Artificial Intelligence</i>, 2022, 36(7): 7194–7201. DOI: <a href="http://dx.doi.org/10.1609/aaai.v36i7.20680">10.1609/aaai.v36i7.20680</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b10">
<td valign="top" class="td1">
[10]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
McGowan M J. The rise of computerized high frequency trading: Use and controversy. <i>Duke L</i>. <i>& Tech</i>. <i>Rev</i>., 2010, 16.
</div>
</td>
</tr>
<tr class="document-box" id="b11">
<td valign="top" class="td1">
[11]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Yang X, Liu W Q, Zhou D, Bian J, Liu T Y. Qlib: An AI-oriented quantitative investment platform. arXiv: 2009.11189, 2021. <a href="https://arxiv.org/abs/2009.11189">https://arxiv.org/abs/2009.11189</a>, Dec. 2022.
</div>
</td>
</tr>
<tr class="document-box" id="b12">
<td valign="top" class="td1">
[12]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Ding Q G, Wu S F, Sun H, Guo J D, Guo J. Hierarchical multi-scale Gaussian transformer for stock movement prediction. In <i>Proc</i>. <i>the 29th International Joint Conference on Artificial Intelligence</i>, Jul. 2020, pp.4640–4646. DOI: <a href="http://dx.doi.org/10.24963/ijcai.2020/640">10.24963/ijcai.2020/640</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b13">
<td valign="top" class="td1">
[13]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Wang J Y, Zhang Y, Tang K, Wu J J, Xiong Z. Alphastock: A buying-winners-and-selling-losers investment strategy using interpretable deep reinforcement attention networks. In <i>Proc</i>. <i>the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining</i>, Jul. 2019, pp.1900–1908. DOI: <a href="http://dx.doi.org/10.1145/3292500.3330647">10.1145/3292500.3330647</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b14">
<td valign="top" class="td1">
[14]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
McKinney W. Pandas: A foundational Python library for data analysis and statistics. <i>Python for High Performance and Scientific Computing</i>, 2011, 14(9): 1–9.
</div>
</td>
</tr>
<tr class="document-box" id="b15">
<td valign="top" class="td1">
[15]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Petersohn D. Dataframe systems: Theory, architecture, and implementation. Technical Report No. UCB/EECS-2021-193, University of California, Berkeley, 2021. <a href="https://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-193.html">https://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-193.html</a>, Dec. 2022.
</div>
</td>
</tr>
<tr class="document-box" id="b16">
<td valign="top" class="td1">
[16]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Petersohn D, Macke S, Xin D, Ma W, Lee D J L, Mo X X, Gonzalez J E, Hellerstein J M, Joseph A D, Ganesh A. Towards scalable dataframe systems. <i>Proceedings of the VLDB Endowment</i>, 2020, 13(12): 203–204. DOI: <a href="http://dx.doi.org/10.14778/3407790.3407807">10.14778/3407790.3407807</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b17">
<td valign="top" class="td1">
[17]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Moritz P, Nishihara R, Wang S, Tumanov A, Liaw R, Liang E, Elibol M, Yang Z H, Paul W, Jordan M I, Stoica I. Ray: A distributed framework for emerging AI applications. In <i>Proc. the 13th USENIX Symposium on Operating Systems Design and Implementation</i>, Oct. 2018, pp.561–577. <a href="https://www.usenix.org/system/files/osdi18-moritz.pdf">https://www.usenix.org/system/files/osdi18-moritz.pdf</a>, Jan. 2023.
</div>
</td>
</tr>
<tr class="document-box" id="b18">
<td valign="top" class="td1">
[18]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Petersohn D, Tang D X, Durrani R, Melik-Adamyan A, Gonzalez J E, Joseph A D, Parameswaran A G. Flexible rule-based decomposition and metadata independence in modin: A parallel dataframe system. <i>Proceedings of the VLDB Endowment</i>, 2021, 15(3): 739–751. DOI: <a href="http://dx.doi.org/10.14778/3494124.3494152">10.14778/3494124.3494152</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b19">
<td valign="top" class="td1">
[19]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Hord R M. The Illiac IV: The First Supercomputer. Springer Science & Business Media, 2013.
</div>
</td>
</tr>
<tr class="document-box" id="b20">
<td valign="top" class="td1">
[20]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Langdale G, Lemire D. Parsing gigabytes of JSON per second. <i>The VLDB Journal</i>, 2019, 28(6): 941–960. DOI: <a href="http://dx.doi.org/10.1007/s00778-019-00578-5">10.1007/s00778-019-00578-5</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b21">
<td valign="top" class="td1">
[21]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Watanabe H, Nakagawa K M. SIMD vectorization for the Lennard-Jones potential with AVX2 and AVX-512 instructions. <i>Computer Physics Communications</i>, 2019, 237: 1–7. DOI: <a href="http://dx.doi.org/10.1016/j.cpc.2018.10.028">10.1016/j.cpc.2018.10.028</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b22">
<td valign="top" class="td1">
[22]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Kahan W. IEEE standard 754 for binary floatingpoint arithmetic. <i>Lecture Notes on the Status of IEEE</i> <i>754</i>, 1996.
</div>
</td>
</tr>
<tr class="document-box" id="b23">
<td valign="top" class="td1">
[23]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Ihaka R, Gentleman R. R: A language for data analysis and graphics. <i>Journal of Computational and Graphical Statistics</i>, 1996, 5(3): 299–314. DOI: <a href="http://dx.doi.org/10.2307/1390807">10.2307/1390807</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b24">
<td valign="top" class="td1">
[24]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Bezanson J, Edelman A, Karpinski S, Shah V B. Julia: A fresh approach to numerical computing. <i>SIAM Review</i>, 2017, 59(1): 65–98. DOI: <a href="http://dx.doi.org/10.1137/141000671">10.1137/141000671</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b25">
<td valign="top" class="td1">
[25]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Duvinage M, Mazza P, Petitjean M. The intra-day performance of market timing strategies and trading systems based on Japanese candlesticks. <i>Quantitative Finance</i>, 2013, 13(7): 1059–1070. DOI: <a href="http://dx.doi.org/10.1080/14697688.2013.768774">10.1080/14697688.2013.768774</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b26">
<td valign="top" class="td1">
[26]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Nelson D M Q, Pereira A C M, De Oliveira R A. Stock market’s price movement prediction with LSTM neural networks. In <i>Proc. International Joint Conference on Neural Networks</i> (<i>IJCNN</i>), May 2017, pp.1419–1426. DOI: <a href="http://dx.doi.org/10.1109/IJCNN.2017.7966019">10.1109/IJCNN.2017.7966019</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b27">
<td valign="top" class="td1">
[27]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Tummon E, Raja M A, Ryan C. Trading cryptocurrency with deep deterministic policy gradients. In <i>Proc. the 21st International Conference on Intelligent Data Engineering and Automated Learning</i>, Nov. 2020, pp.245–256. DOI: <a href="http://dx.doi.org/10.1007/978-3-030-62362-3_22">10.1007/978-3-030-62362-3_22</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b28">
<td valign="top" class="td1">
[28]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
De Guzman J, Nuffer D. The Spirit parser library: Inline parsing in C++. <i>CC Plus Plus Users Journal</i>, 2003, 21(9): 22–46.
</div>
</td>
</tr>
<tr class="document-box" id="b29">
<td valign="top" class="td1">
[29]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Alon N, Matias Y, Szegedy M. The space complexity of approximating the frequency moments. <i>Journal of Computer and System Sciences</i>, 1999, 58(1): 137–147. DOI: <a href="http://dx.doi.org/10.1006/jcss.1997.1545">10.1006/jcss.1997.1545</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b30">
<td valign="top" class="td1">
[30]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Carbone P, Katsifodimos A, Ewen S, Markl V, Haridi S, Tzoumas K. Apache Flink<span style="line-height:inherit;vertical-align:baseline;">TM</span>: Stream and batch processing in a single engine. <i>Bulletin of the IEEE Computer Society Technical Committee on Data Engineering</i>, 2015, 36(4): 28–38.
</div>
</td>
</tr>
<tr class="document-box" id="b31">
<td valign="top" class="td1">
[31]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Iqbal M H, Soomro T R. Big data analysis: Apache storm perspective. <i>International Journal of Computer Trends and Technology</i>, 2015, 19(1): 9–14. DOI: <a href="http://dx.doi.org/10.14445/22312803/IJCTT-V19P103">10.14445/22312803/IJCTT-V19P103</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b32">
<td valign="top" class="td1">
[32]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Foley D, Danskin J. Ultra-performance Pascal GPU and NVLink interconnect. <i>IEEE Micro</i>, 2017, 37(2): 7–17. DOI: <a href="http://dx.doi.org/10.1109/MM.2017.37">10.1109/MM.2017.37</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b33">
<td valign="top" class="td1">
[33]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Grant D A. The Latin square principle in the design and analysis of psychological experiments. <i>Psychological Bulletin</i>, 1948, 45(5): 427–442. DOI: <a href="http://dx.doi.org/10.1037/h0053912">10.1037/h0053912</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b34">
<td valign="top" class="td1">
[34]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Agarap A F. Deep learning using rectified linear units (ReLU). arXiv: 1803.08375, 2018. <a href="https://arxiv.org/abs/1803.08375">https://arxiv.org/abs/1803.08375</a>, Dec. 2022.
</div>
</td>
</tr>
<tr class="document-box" id="b35">
<td valign="top" class="td1">
[35]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Harris C R, Millman K J, Van Der walt S J, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith N J, Kern R, Picus M, Hoyer S, Van Kerkwijk M H, Brett M, Haldane A, Del Río J F, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant T E. Array programming with NumPy. <i>Nature</i>, 2020, 585(7825): 357–362. DOI: <a href="http://dx.doi.org/10.1038/s41586-020-2649-2">10.1038/s41586-020-2649-2</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b36">
<td valign="top" class="td1">
[36]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z M, Gimelshein N, Antiga L, Desmaison A, Köpf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J J, Chintala S. PyTorch: An imperative style, high-performance deep learning library. In <i>Proc</i>. <i>the 33rd International Conference on Neural Information Processing Systems</i>, Dec. 2019, Article No. 712.
</div>
</td>
</tr>
<tr class="document-box" id="b37">
<td valign="top" class="td1">
[37]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Dagum L, Menon R. OpenMP: An industry standard API for shared-memory programming. <i>IEEE Computational Science and Engineering</i>, 1998, 5(1): 46–55. DOI: <a href="http://dx.doi.org/10.1109/99.660313">10.1109/99.660313</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b38">
<td valign="top" class="td1">
[38]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Rodriguez S, Cardiff P. A general approach for running Python codes in OpenFOAM using an embedded Pybind11 Python interpreter. <i>OpenFOAM® Journal</i>, 2022, 2: 166–182. DOI: <a href="http://dx.doi.org/10.51560/ofj.v2.79">10.51560/ofj.v2.79</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b39">
<td valign="top" class="td1">
[39]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Titus A J, Kishore S, Stavish T, Rogers S M, Ni K. PySEAL: A Python wrapper implementation of the SEAL homomorphic encryption library. arXiv: 1803.01891, 2018. <a href="https://arxiv.org/abs/1803.01891">https://arxiv.org/abs/1803.01891</a>, Dec. 2022.
</div>
</td>
</tr>
<tr class="document-box" id="b40">
<td valign="top" class="td1">
[40]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Anderson C. Docker [software engineering]. <i>IEEE Software</i>, 2015, 32(3): 102-c3. DOI: <a href="http://dx.doi.org/10.1109/MS.2015.62">10.1109/MS.2015.62</a>.
</div>
</td>
</tr>
</tbody>
</table> |