<table class="reference-tab" style="background-color:#FFFFFF;width:914.104px;color:#333333;font-family:Calibri, Arial, 微软雅黑, "font-size:16px;">
<tbody>
<tr class="document-box" id="b1">
<td valign="top" class="td1">
[1]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Lucas R, Ang J, Bergman K et al. Top ten exascale research challenges. DOE Advanced Scientific Computing Advisory Subcommittee (ASCAC) Report, U.S. Department of Energy, Office of Science, 2014. DOI: <a href="http://dx.doi.org/10.2172/1222713.">10.2172/1222713</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b2">
<td valign="top" class="td1">
[2]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Jeon M, Venkataraman S, Phanishayee A, Qian J J, Xiao W C, Yang F. Analysis of large-scale multi-tenant GPU clusters for DNN training workloads. In <i>Proc. the 2019 USENIX Annual Technical Conference</i>, Jul. 2019, pp.947-960.
</div>
</td>
</tr>
<tr class="document-box" id="b3">
<td valign="top" class="td1">
[3]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Ge R, Feng X Z, Allen T, Zou P F. The case for cross-component power coordination on power bounded systems. <i>IEEE Trans. Parallel and Distributed Systems</i>, 2021, 32(10): 2464-2476. DOI: <a href="http://dx.doi.org/10.1109/TPDS.2021.3068235">10.1109/TPDS.2021.3068235</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b4">
<td valign="top" class="td1">
[4]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Ge R, Feng X Z, He Y Y, Zou P F. The case for cross-component power coordination on power bounded systems. In <i>Proc. the 45th International Conference on Parallel Processing (ICPP)</i>, Aug. 2016, pp.516-525. DOI: <a href="http://dx.doi.org/10.1109/ICPP.2016.66">10.1109/ICPP.2016.66</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b5">
<td valign="top" class="td1">
[5]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Ge R, Zou P F, Feng X Z. Application-aware power coordination on power bounded NUMA multicore systems. In <i>Proc. the 46th International Conference on Parallel Processing (ICPP)</i>, Aug. 2017, pp.591-600. DOI: <a href="http://dx.doi.org/10.1109/ICPP.2017.68">10.1109/ICPP.2017.68</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b6">
<td valign="top" class="td1">
[6]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Zou P F, Allen T, Davis C H, Feng X Z, Ge R. CLIP: Cluster-level intelligent power coordination for power-bounded systems. In <i>Proc. the 2017 IEEE International Conference on Cluster Computing (CLUSTER)</i>, Sept. 2017, pp.541-551. DOI: <a href="http://dx.doi.org/10.1109/CLUSTER.2017.98">10.1109/CLUSTER.2017.98</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b7">
<td valign="top" class="td1">
[7]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Zou P F, Feng X Z, Ge R. Contention aware workload and resource co-scheduling on power-bounded systems. In <i>Proc. the 2019 IEEE International Conference on Networking, Architecture and Storage (NAS)</i>, Aug. 2019. DOI: <a href="http://dx.doi.org/10.1109/NAS.2019.8834721">10.1109/NAS.2019.8834721</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b8">
<td valign="top" class="td1">
[8]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Zou P F, Rodriguez D, Ge R. Maximizing throughput on power-bounded HPC systems. In <i>Proc. the 2018 IEEE International Conference on Cluster Computing (CLUSTER)</i>, Sept. 2018, pp.156-157. DOI: <a href="http://dx.doi.org/10.1109/CLUSTER.2018.00030">10.1109/CLUSTER.2018.00030</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b9">
<td valign="top" class="td1">
[9]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Eyerman S, Eeckhout L. System-level performance metrics for multiprogram workloads. <i>IEEE Micro</i>, 2008, 28(3): 42–53. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/MM.2008.44" target="_blank">10.1109/MM.2008.44</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b10">
<td valign="top" class="td1">
[10]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Blagodurov S, Zhuravlev S, Fedorova A. Contention-aware scheduling on multicore systems. <i>ACM Trans. Computer Systems</i>, 2010, 28(4): Article No. 8. DOI: <a href="http://dx.doi.org/10.1145/1880018.1880019">10.1145/1880018.1880019</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b11">
<td valign="top" class="td1">
[11]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Subramanian L, Seshadri V, Ghosh A, Khan S, Mutlu O. The application slowdown model: Quantifying and controlling the impact of inter-application interference at shared caches and main memory. In <i>Proc. the 48th Annual IEEE/ACM International Symposium on Microarchitecture</i>, Dec. 2015, pp.62-75. DOI: <a href="http://dx.doi.org/10.1145/2830772.2830803">10.1145/2830772.2830803</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b12">
<td valign="top" class="td1">
[12]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Kelley J, Stewart C, Tiwari D, Gupta S. Adaptive power profiling for many-core HPC architectures. In <i>Proc. the 2016 IEEE International Conference on Autonomic Computing (ICAC)</i>, Jul. 2016, pp.179-188. DOI: <a href="http://dx.doi.org/10.1109/ICAC.2016.45">10.1109/ICAC.2016.45</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b13">
<td valign="top" class="td1">
[13]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Mishra N, Lafferty J D, Hoffmann H. ESP: A machine learning approach to predicting application interference. In <i>Proc. the 2017 IEEE International Conference on Autonomic Computing (ICAC)</i>, Jul. 2017, pp.125-134. DOI: <a href="http://dx.doi.org/10.1109/ICAC.2017.29">10.1109/ICAC.2017.29</a>.
</div>
</td>
</tr>
</tbody>
</table> |