Journal of Computer Science and Technology ›› 2023, Vol. 38 ›› Issue (1): 146-165.doi: 10.1007/s11390-023-2908-4

Special Issue: Surveys; Computer Networks and Distributed Computing

• Special Issue in Honor of Professor Kai Hwang’s 80th Birthday • Previous Articles     Next Articles

A Survey on Clock Synchronization in the Industrial Internet

Fan Dang1,† (党凡), Member, CCF, ACM, IEEE, Xi-Kai Sun2,† (孙熙凯), Ke-Bin Liu1 (刘克彬), Member, CCF, ACM, IEEE, Yi-Fan Xu3 (许逸凡), and Yun-Hao Liu1,2,* (刘云浩), Fellow, CCF, ACM, IEEE        

  1. Global Innovation Exchange, Tsinghua University, Beijing 100084, China
    Department of Automation, Tsinghua University, Beijing 100084, China
    School of Software, Tsinghua University, Beijing 100084, China
  • Received:2022-10-15 Revised:2022-11-21 Accepted:2023-01-09 Online:2023-02-28 Published:2023-02-28
  • Contact: Yun-Hao Liu E-mail:yunhao@tsinghua.edu.cn
  • About author:Yun-Hao Liu received his B.E. degree from the Department of Automation, Tsinghua University, Beijing, in 1995. He received his M.A. degree from Beijing Foreign Studies University, Beijing, in 1997. He received his M.S. and Ph.D. degrees in computer science and engineering from Michigan State University, East Lansing, in 2003 and 2004, respectively. He is a professor in the Department of Automation and the dean of the Global Innovation Exchange, Tsinghua University, Beijing. He is a fellow of CCF, ACM and IEEE. He is the Editor-in-Chief of ACM Transactions on Sensor Networks and Communications of the CCF. His research interests include Internet of Things, wireless sensor networks, indoor localization, the Industrial Internet, and cloud computing.
  • Supported by:
    This work is supported in part by the National Key Research and Development Program of China under Grant No. 2021YFB 2900100.

Clock synchronization is one of the most fundamental and crucial network communication strategies. With the expansion of the Industrial Internet in numerous industrial applications, a new requirement for the precision, security, complexity, and other features of the clock synchronization mechanism has emerged in various industrial situations. This paper presents a study of standardized clock synchronization protocols and techniques for various types of networks, and a discussion of how these protocols and techniques might be classified. Following that is a description of how certain clock synchronization protocols and technologies, such as PROFINET, Time-Sensitive Networking (TSN), and other well-known industrial networking protocols, can be applied in a number of industrial situations. This study also investigates the possible future development of clock synchronization techniques and technologies.

Key words: clock synchronization; industrial communication; Industrial Internet; wireless sensor network;

<table class="reference-tab" style="background-color:#FFFFFF;width:914.104px;color:#333333;font-family:Calibri, Arial, 微软雅黑, "font-size:16px;"> <tbody> <tr class="document-box" id="b1"> <td valign="top" class="td1"> [1] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Lévesque M, Tipper D. A survey of clock synchronization over packet-switched networks. <i>IEEE Communications Surveys & Tutorials</i>, 2016, 18(4): 2926–2947. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/COMST.2016.2590438" target="_blank">10.1109/COMST.2016.2590438</a>. </div> </td> </tr> <tr class="document-box" id="b2"> <td valign="top" class="td1"> [2] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Cintuglu M H, Mohammed O A, Akkaya K, Uluagac A S. A survey on smart grid cyber-physical system testbeds. <i>IEEE Communications Surveys & Tutorials</i>, 2017, 19(1): 446–464. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/COMST.2016.2627399" target="_blank">10.1109/COMST.2016.2627399</a>. </div> </td> </tr> <tr class="document-box" id="b3"> <td valign="top" class="td1"> [3] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Yadav P, McCann J A, Pereira T. Self-synchronization in duty-cycled Internet of Things (IoT) applications. <i>IEEE Internet of Things Journal</i>, 2017, 4(6): 2058–2069. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JIOT.2017.2757138" target="_blank">10.1109/JIOT.2017.2757138</a>. </div> </td> </tr> <tr class="document-box" id="b4"> <td valign="top" class="td1"> [4] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> He J P, Cheng P, Shi L, Chen J M. SATS: Secure average-consensus-based time synchronization in wireless sensor networks. <i>IEEE Trans. Signal Processing</i>, 2013, 61(24): 6387–6400. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TSP.2013.2286102" target="_blank">10.1109/TSP.2013.2286102</a>. </div> </td> </tr> <tr class="document-box" id="b5"> <td valign="top" class="td1"> [5] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Regnath E, Shivaraman N, Shreejith S, Easwaran A, Steinhorst S. Blockchain, what time is it? Trustless datetime synchronization for IoT. In <i>Proc. the 2020 International Conference on Omni-layer Intelligent Systems</i>, Aug. 31–Sept. 2, 2020. DOI: <a href="http://dx.doi.org/10.1109/COINS49042.2020.9191420">10.1109/COINS49042.2020.9191420</a>. </div> </td> </tr> <tr class="document-box" id="b6"> <td valign="top" class="td1"> [6] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Chalapathi G S S, Chamola V, Guranarayanan S <i>et al</i>. E-SATS: An efficient and simple time synchronization protocol for cluster-based wireless sensor networks. <i>IEEE Sensors Journal</i>, 2019, 19(21): 10144–10156. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JSEN.2019.2922366" target="_blank">10.1109/JSEN.2019.2922366</a>. </div> </td> </tr> <tr class="document-box" id="b7"> <td valign="top" class="td1"> [7] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Richards D, Abdelgawad A, Yelamarthi K. How does encryption influence timing in IoT? In <i>Proc. the 2018 IEEE Global Conference on Internet of Things</i>, Dec. 2018. DOI: <a href="http://dx.doi.org/10.1109/GCIoT.2018.8620133">10.1109/GCIoT.2018.8620133</a>. </div> </td> </tr> <tr class="document-box" id="b8"> <td valign="top" class="td1"> [8] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Zhang K, Liang X H, Lu R X, Shen X M. Sybil attacks and their defenses in the Internet of Things. <i>IEEE Internet of Things Journal</i>, 2014, 1(5): 372–383. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JIOT.2014.2344013" target="_blank">10.1109/JIOT.2014.2344013</a>. </div> </td> </tr> <tr class="document-box" id="b9"> <td valign="top" class="td1"> [9] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Qiu T, Liu X Z, Han M, Ning H S, Wu D O. A secure time synchronization protocol against fake timestamps for large-scale Internet of Things. <i>IEEE Internet of Things Journal</i>, 2017, 4(6): 1879–1889. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JIOT.2017.2714904" target="_blank">10.1109/JIOT.2017.2714904</a>. </div> </td> </tr> <tr class="document-box" id="b10"> <td valign="top" class="td1"> [10] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Elson J, Girod L, Estrin D. Fine-grained network time synchronization using reference broadcasts. In <i>Proc. the 5th Symposium on Operating Systems Design and Implementation</i>, Dec. 2002, pp.147–163. </div> </td> </tr> <tr class="document-box" id="b11"> <td valign="top" class="td1"> [11] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Beke T, Dijk E, Ozcelebi T, Verhoeven R. Time synchronization in IoT mesh networks. In <i>Proc. the 2020 International Symposium on Networks, Computers and Communications</i>, Oct. 2020. DOI: <a href="http://dx.doi.org/10.1109/ISNCC49221.2020.9297296">10.1109/ISNCC49221.2020.9297296</a>. </div> </td> </tr> <tr class="document-box" id="b12"> <td valign="top" class="td1"> [12] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Mani S K, Durairajan R, Barford P, Sommers J. An architecture for IoT clock synchronization. In <i>Proc. the 8th International Conference on the Internet of Things</i>, Oct. 2018, p.17. DOI: <a href="http://dx.doi.org/10.1145/3277593.3277606">10.1145/3277593.3277606</a>. </div> </td> </tr> <tr class="document-box" id="b13"> <td valign="top" class="td1"> [13] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Shi F R, Tuo X G, Yang S X, Lu J, Li H L. Rapid-flooding time synchronization for large-scale wireless sensor networks. <i>IEEE Trans. Industrial Informatics</i>, 2020, 16(3): 1581–1590. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TII.2019.2927292" target="_blank">10.1109/TII.2019.2927292</a>. </div> </td> </tr> <tr class="document-box" id="b14"> <td valign="top" class="td1"> [14] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Ferrari F, Zimmerling M, Thiele L, Saukh O. Efficient network flooding and time synchronization with glossy. In <i>Proc. the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks</i>, Apr. 2011, pp.73–84. </div> </td> </tr> <tr class="document-box" id="b15"> <td valign="top" class="td1"> [15] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Huan X T, Kim K S. Per-hop delay compensation in time synchronization for multi-hop wireless sensor networks based on packet-relaying gateways. <i>IEEE Communications Letters</i>, 2020, 24(10): 2300–2304. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/LCOMM.2020.3002705" target="_blank">10.1109/LCOMM.2020.3002705</a>. </div> </td> </tr> <tr class="document-box" id="b16"> <td valign="top" class="td1"> [16] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Jia P Y, Wang X B, Shen X M. Digital-twin-enabled intelligent distributed clock synchronization in industrial IoT systems. <i>IEEE Internet of Things Journal</i>, 2021, 8(6): 4548–4559. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JIOT.2020.3029131" target="_blank">10.1109/JIOT.2020.3029131</a>. </div> </td> </tr> <tr class="document-box" id="b17"> <td valign="top" class="td1"> [17] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Jia P Y, Wang X B, Shen X M. Passive network synchronization based on concurrent observations in industrial IoT systems. <i>IEEE Internet of Things Journal</i>, 2021, 8(18): 14028–14038. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JIOT.2021.3070242" target="_blank">10.1109/JIOT.2021.3070242</a>. </div> </td> </tr> <tr class="document-box" id="b18"> <td valign="top" class="td1"> [18] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Zhu S P, Zheng X L, Liu L, Ma H D. AirSync: Time synchronization for large-scale IoT networks using aircraft signals. In <i>Proc. the 17th Annual IEEE International Conference on Sensing, Communication, and Networking</i>, Jun. 2020. DOI: <a href="http://dx.doi.org/10.1109/SECON48991.2020.9158433">10.1109/SECON48991.2020.9158433</a>. </div> </td> </tr> <tr class="document-box" id="b19"> <td valign="top" class="td1"> [19] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Nishi H, Song E Y, Nakamura Y, Lee K B, Liu Y C, Tsang K F. Time synchronization of IEEE P1451.0 and P1451.1.6 standard-based sensor networks. In <i>Proc. the 47th Annual Conference of the IEEE Industrial Electronics Society</i>, Oct. 2021. DOI: <a href="http://dx.doi.org/10.1109/IECON48115.2021.9589904">10.1109/IECON48115.2021.9589904</a>. </div> </td> </tr> <tr class="document-box" id="b20"> <td valign="top" class="td1"> [20] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Huan X T, Kim K S, Lee S, Lim E G, Marshall A. A beaconless asymmetric energy-efficient time synchronization scheme for resource-constrained multi-hop wireless sensor networks. <i>IEEE Trans. Communications</i>, 2020, 68(3): 1716–1730. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TCOMM.2019.2960344" target="_blank">10.1109/TCOMM.2019.2960344</a>. </div> </td> </tr> <tr class="document-box" id="b21"> <td valign="top" class="td1"> [21] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Huan X T, Kim K S, Zhang J Q. NISA: Node identification and spoofing attack detection based on clock features and radio information for wireless sensor networks. <i>IEEE Trans. Communications</i>, 2021, 69(7): 4691–4703. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TCOMM.2021.3071448" target="_blank">10.1109/TCOMM.2021.3071448</a>. </div> </td> </tr> <tr class="document-box" id="b22"> <td valign="top" class="td1"> [22] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Bhandari S, Wang X B. Prioritized clock synchronization for event critical applications in wireless IoT networks. <i>IEEE Sensors Journal</i>, 2019, 19(16): 7120–7128. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JSEN.2019.2912938" target="_blank">10.1109/JSEN.2019.2912938</a>. </div> </td> </tr> <tr class="document-box" id="b23"> <td valign="top" class="td1"> [23] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Schmid T, Shea R, Charbiwala Z, Friedman J, Srivastava M B, Cho Y H. On the interaction of clocks, power, and synchronization in duty-cycled embedded sensor nodes. <i>ACM Trans. Sensor Networks</i>, 2010, 7(3): Article No. 24. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1145/1807048.1807053" target="_blank">10.1145/1807048.1807053</a>. </div> </td> </tr> <tr class="document-box" id="b24"> <td valign="top" class="td1"> [24] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Yang S J, Xu C Q, Guan J F, Zhang T. Event-based diffusion Kalman filter strategy for clock synchronization in WSNs. In <i>Proc. the 2018 International Conference on Networking and Network Applications</i>, Oct. 2018, pp.270–276. DOI: <a href="http://dx.doi.org/10.1109/NANA.2018.8648770">10.1109/NANA.2018.8648770</a>. </div> </td> </tr> <tr class="document-box" id="b25"> <td valign="top" class="td1"> [25] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Jia P Y, Wang X B, Zheng K. Distributed clock synchronization based on intelligent clustering in local area industrial IoT systems. <i>IEEE Trans. Industrial Informatics</i>, 2020, 16(6): 3697–3707. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TII.2019.2937331" target="_blank">10.1109/TII.2019.2937331</a>. </div> </td> </tr> <tr class="document-box" id="b26"> <td valign="top" class="td1"> [26] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Wang Z W, Zeng P, Kong L H, Li D, Jin X. Node-identification-based secure time synchronization in industrial wireless sensor networks. <i>Sensors</i>, 2018, 18(8): 2718. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.3390/s18082718" target="_blank">10.3390/s18082718</a>. </div> </td> </tr> <tr class="document-box" id="b27"> <td valign="top" class="td1"> [27] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Wu J, Zhang L Y, Bai Y, Sun Y S. Cluster-based consensus time synchronization for wireless sensor networks. <i>IEEE Sensors Journal</i>, 2015, 15(3): 1404–1413. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JSEN.2014.2363471" target="_blank">10.1109/JSEN.2014.2363471</a>. </div> </td> </tr> <tr class="document-box" id="b28"> <td valign="top" class="td1"> [28] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Kadambar S, Chavva A K R. Low complexity ML synchronization for 3GPP NB-IoT. In <i>Proc. the 2018 International Conference on Signal Processing and Communications</i>, Jul. 2018, pp.307–311. DOI: <a href="http://dx.doi.org/10.1109/SPCOM.2018.8724439">10.1109/SPCOM.2018.8724439</a>. </div> </td> </tr> <tr class="document-box" id="b29"> <td valign="top" class="td1"> [29] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Dian F J, Yousefi A, Somaratne K. A study in accuracy of time synchronization of BLE devices using connection-based event. In <i>Proc. the 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference</i>, Oct. 2017, pp.595–601. DOI: <a href="http://dx.doi.org/10.1109/IEMCON.2017.8117156">10.1109/IEMCON.2017.8117156</a>. </div> </td> </tr> <tr class="document-box" id="b30"> <td valign="top" class="td1"> [30] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Gore R N, Lisova E, Åkerberg J, Björkman M. CoSiNeT: A lightweight clock synchronization algorithm for industrial IoT. In <i>Proc. the 4th IEEE International Conference on Industrial Cyber-Physical Systems</i>, May 2021, pp.92–97. DOI: <a href="http://dx.doi.org/10.1109/ICPS49255.2021.9468174">10.1109/ICPS49255.2021.9468174</a>. </div> </td> </tr> <tr class="document-box" id="b31"> <td valign="top" class="td1"> [31] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Sommer P, Wattenhofer R. Gradient clock synchronization in wireless sensor networks. In <i>Proc. the 2009 International Conference on Information Processing in Sensor Networks</i>, Apr. 2009, pp.37–48. </div> </td> </tr> <tr class="document-box" id="b32"> <td valign="top" class="td1"> [32] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Li Y, Chen S, Lin F J. A coarse timing synchronization method of low SNR OFDM systems for IoT. In <i>Proc. the 2018 IEEE International Conference on Integrated Circuits, Technologies and Applications</i>, Nov. 2018, pp.166–167. DOI: <a href="http://dx.doi.org/10.1109/CICTA.2018.8705961">10.1109/CICTA.2018.8705961</a>. </div> </td> </tr> <tr class="document-box" id="b33"> <td valign="top" class="td1"> [33] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Alvarez M A, Spagnolini U. Collision vs non-collision distributed time synchronization for dense IoT deployments. In <i>Proc. the 2017 IEEE International Conference on Communications</i>, May 2017. DOI: <a href="http://dx.doi.org/10.1109/ICC.2017.7997469">10.1109/ICC.2017.7997469</a>. </div> </td> </tr> <tr class="document-box" id="b34"> <td valign="top" class="td1"> [34] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Idrees Z, Granados J, Sun Y, Latif S, Gong L, Zou Z, Zheng L R. IEEE 1588 for clock synchronization in industrial IoT and related applications: A review on contributing technologies, protocols and enhancement methodologies. <i>IEEE Access</i>, 2020, 8: 155660–155678. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/ACCESS.2020.3013669" target="_blank">10.1109/ACCESS.2020.3013669</a>. </div> </td> </tr> <tr class="document-box" id="b35"> <td valign="top" class="td1"> [35] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Djenouri D. <i>R <span style="line-height:inherit;vertical-align:baseline;">4</span>Syn</i>: Relative referenceless receiver/receiver time synchronization in wireless sensor networks. <i>IEEE Signal Processing Letters</i>, 2012, 19(4): 175–178. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/LSP.2012.2185491" target="_blank">10.1109/LSP.2012.2185491</a>. </div> </td> </tr> <tr class="document-box" id="b36"> <td valign="top" class="td1"> [36] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Cheng S Y, Cai Z P, Li J Z, Gao H. Extracting kernel dataset from big sensory data in wireless sensor networks. <i>IEEE Trans. Knowledge and Data Engineering</i>, 2017, 29(4): 813–827. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TKDE.2016.2645212" target="_blank">10.1109/TKDE.2016.2645212</a>. </div> </td> </tr> <tr class="document-box" id="b37"> <td valign="top" class="td1"> [37] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Su W, Akyildiz I F. Time-diffusion synchronization protocol for wireless sensor networks. <i>IEEE/ACM Trans. Networking</i>, 2005, 13(2): 384–397. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TNET.2004.842228" target="_blank">10.1109/TNET.2004.842228</a>. </div> </td> </tr> <tr class="document-box" id="b38"> <td valign="top" class="td1"> [38] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Gong F Y, Sichitiu M L. CESP: A low-power high-accuracy time synchronization protocol. <i>IEEE Trans. Vehicular Technology</i>, 2016, 65(4): 2387–2396. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TVT.2015.2417810" target="_blank">10.1109/TVT.2015.2417810</a>. </div> </td> </tr> <tr class="document-box" id="b39"> <td valign="top" class="td1"> [39] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Resner D, Fröhlich A A, Wanner L F. Speculative precision time protocol: Submicrosecond clock synchronization for the IoT. In <i>Proc. the 21st International Conference on Emerging Technologies and Factory Automation</i>, Sept. 2016. DOI: <a href="http://dx.doi.org/10.1109/ETFA.2016.7733533">10.1109/ETFA.2016.7733533</a>. </div> </td> </tr> <tr class="document-box" id="b40"> <td valign="top" class="td1"> [40] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Raju N, Hasan K F. A feasibility study on SNTP and SPoT protocols on time synchronization in Internet of Things. arXiv: 2010.09219, 2020. <a href="https://arxiv.org/abs/2010.09219">https://arxiv.org/abs/2010.09219</a>, Dec. 2022. </div> </td> </tr> <tr class="document-box" id="b41"> <td valign="top" class="td1"> [41] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Bansal M, Gupta A. Out-degree based clock synchronization in wireless networks using precision time protocol. In <i>Proc. the 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems</i>, Dec. 2018. DOI: <a href="http://dx.doi.org/10.1109/ANTS.2018.8710042">10.1109/ANTS.2018.8710042</a>. </div> </td> </tr> <tr class="document-box" id="b42"> <td valign="top" class="td1"> [42] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Maróti M, Kusy B, Simon S, Lédeczi Á. The flooding time synchronization protocol. In <i>Proc. the 2nd International Conference on Embedded Networked Sensor Systems</i>, Nov. 2004, pp.39–49. DOI: <a href="http://dx.doi.org/10.1145/1031495.1031501">10.1145/1031495.1031501</a>. </div> </td> </tr> <tr class="document-box" id="b43"> <td valign="top" class="td1"> [43] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Sheu J P, Hu W K, Lin J C. Ratio-based time synchronization protocol in wireless sensor networks. <i>Telecommunication Systems</i>, 2008, 39(1): 25–35. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1007/s11235-008-9081-5" target="_blank">10.1007/s11235-008-9081-5</a>. </div> </td> </tr> <tr class="document-box" id="b44"> <td valign="top" class="td1"> [44] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Kim K S, Lee S, Lim E G. Energy-efficient time synchronization based on asynchronous source clock frequency recovery and reverse two-way message exchanges in wireless sensor networks. <i>IEEE Trans. Communications</i>, 2017, 65(1): 347–359. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TCOMM.2016.2626281" target="_blank">10.1109/TCOMM.2016.2626281</a>. </div> </td> </tr> <tr class="document-box" id="b45"> <td valign="top" class="td1"> [45] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Noh K L, Serpedin E, Qaraqe K. A new approach for time synchronization in wireless sensor networks: Pairwise broadcast synchronization. <i>IEEE Trans. Wireless Communications</i>, 2008, 7(9): 3318–3322. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TWC.2008.070343" target="_blank">10.1109/TWC.2008.070343</a>. </div> </td> </tr> <tr class="document-box" id="b46"> <td valign="top" class="td1"> [46] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Qiu T, Chi L, Guo W <i>et al</i>. STETS: A novel energy-efficient time synchronization scheme based on embedded networking devices. <i>Microprocessors and Microsystems</i>, 2015, 39(8): 1285–1295. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1016/j.micpro.2015.07.006" target="_blank">10.1016/j.micpro.2015.07.006</a>. </div> </td> </tr> <tr class="document-box" id="b47"> <td valign="top" class="td1"> [47] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Qiu T, Zhang Y S, Qiao D J, Zhang X Y, Wymore M L, Sangaiah A K. A robust time synchronization scheme for Industrial Internet of Things. <i>IEEE Trans. Industrial Informatics</i>, 2018, 14(8): 3570–3580. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TII.2017.2738842" target="_blank">10.1109/TII.2017.2738842</a>. </div> </td> </tr> <tr class="document-box" id="b48"> <td valign="top" class="td1"> [48] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Navas R E, Toutain L. LATe: A lightweight authenticated time synchronization protocol for IoT. In <i>Proc. the 2018 Global Internet of Things Summit</i>, Jun. 2018. DOI: <a href="http://dx.doi.org/10.1109/GIOTS.2018.8534565">10.1109/GIOTS.2018.8534565</a>. </div> </td> </tr> <tr class="document-box" id="b49"> <td valign="top" class="td1"> [49] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Fan K, Wang S Y, Ren Y H, Yang K, Yan Z, Li H, Yang Y T. Blockchain-based secure time protection scheme in IoT. <i>IEEE Internet of Things Journal</i>, 2019, 6(3): 4671–4679. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JIOT.2018.2874222" target="_blank">10.1109/JIOT.2018.2874222</a>. </div> </td> </tr> <tr class="document-box" id="b50"> <td valign="top" class="td1"> [50] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> He J P, Cheng P, Shi L, Chen J M, Sun Y X. Time synchronization in WSNs: A maximum-value-based consensus approach. <i>IEEE Trans. Automatic Control</i>, 2014, 59(3): 660–675. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TAC.2013.2286893" target="_blank">10.1109/TAC.2013.2286893</a>. </div> </td> </tr> <tr class="document-box" id="b51"> <td valign="top" class="td1"> [51] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Schenato L, Fiorentin F. Average TimeSynch: A consensus-based protocol for clock synchronization in wireless sensor networks. <i>Automatica</i>, 2011, 47(9): 1878–1886. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1016/j.automatica.2011.06.012" target="_blank">10.1016/j.automatica.2011.06.012</a>. </div> </td> </tr> <tr class="document-box" id="b52"> <td valign="top" class="td1"> [52] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Wang Z W, Zeng P, Zhou M T, Li D, Wang J T. Cluster-based maximum consensus time synchronization for industrial wireless sensor networks. <i>Sensors</i>, 2017, 17(1): 141. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.3390/s17010141" target="_blank">10.3390/s17010141</a>. </div> </td> </tr> <tr class="document-box" id="b53"> <td valign="top" class="td1"> [53] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Shivaraman N, Schuster P, Ramanathan S, Easwaran A, Steinhorst S. C-Sync: The resilient time synchronization protocol. In <i>Proc. the 19th ACM/IEEE International Conference on Information Processing in Sensor Networks </i>(<i>poster</i>), Apr. 2020, pp.333–334. DOI: <a href="http://dx.doi.org/10.1109/IPSN48710.2020.00-20">10.1109/IPSN48710.2020.00-20</a>. </div> </td> </tr> <tr class="document-box" id="b54"> <td valign="top" class="td1"> [54] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Hu X, Park T, Shin K G. Attack-tolerant time-synchronization in wireless sensor networks. In <i>Proc. the 27th Conference on Computer Communications</i>, Apr. 2008, pp.41–45. DOI: <a href="http://dx.doi.org/10.1109/INFOCOM.2008.17">10.1109/INFOCOM.2008.17</a>. </div> </td> </tr> <tr class="document-box" id="b55"> <td valign="top" class="td1"> [55] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> He J P, Chen J M, Cheng P, Cao X H. Secure time synchronization in wireless sensor networks: A maximum consensus-based approach. <i>IEEE Trans. Parallel and Distributed Systems</i>, 2014, 25(4): 1055–1065. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TPDS.2013.150" target="_blank">10.1109/TPDS.2013.150</a>. </div> </td> </tr> <tr class="document-box" id="b56"> <td valign="top" class="td1"> [56] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Feld J. PROFINET-scalable factory communication for all applications. In <i>Proc. the 2004 IEEE International Workshop on Factory Communication Systems</i>, Sept. 2004, pp.33–38. DOI: <a href="http://dx.doi.org/10.1109/WFCS.2004.1377673">10.1109/WFCS.2004.1377673</a>. </div> </td> </tr> <tr class="document-box" id="b57"> <td valign="top" class="td1"> [57] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Fontanelli D, Macii D, Rinaldi S, Ferrari P, Flammini A. Performance analysis of a clock state estimator for PROFINET IO IRT synchronization. In <i>Proc. the 2013 IEEE International Instrumentation and Measurement Technology Conference</i>, May 2013, pp.1828–1833. DOI: <a href="http://dx.doi.org/10.1109/I2MTC.2013.6555730">10.1109/I2MTC.2013.6555730</a>. </div> </td> </tr> <tr class="document-box" id="b58"> <td valign="top" class="td1"> [58] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Ferrari P, Flammini A, Marioli D, Rinaldi S, Sisinni E, Taroni A, Venturini F. Clock synchronization of PTP-based devices through PROFINET IO networks. In <i>Proc. the 2008 IEEE International Conference on Emerging Technologies and Factory Automation</i>, Sept. 2008, pp.496–499. DOI: <a href="http://dx.doi.org/10.1109/ETFA.2008.4638445">10.1109/ETFA.2008.4638445</a>. </div> </td> </tr> <tr class="document-box" id="b59"> <td valign="top" class="td1"> [59] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Ferrari P, Flammini A, Rinaldi S, Sisinni E. On the seamless interconnection of IEEE1588-based devices using a PROFINET IO infrastructure. <i>IEEE Trans. Industrial Informatics</i>, 2010, 6(3): 381–392. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TII.2010.2051954" target="_blank">10.1109/TII.2010.2051954</a>. </div> </td> </tr> <tr class="document-box" id="b60"> <td valign="top" class="td1"> [60] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Val I, Seijo ó, Torrego R, Astarloa A. IEEE 802.1AS clock synchronization performance evaluation of an integrated wired-wireless TSN architecture. <i>IEEE Trans. Industrial Informatics</i>, 2022, 18(5): 2986–2999. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TII.2021.3106568" target="_blank">10.1109/TII.2021.3106568</a>. </div> </td> </tr> <tr class="document-box" id="b61"> <td valign="top" class="td1"> [61] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Zhao Y, Yang Z, He X W, Wu J H, Cao H, Dong L, Dang F, Liu Y H. E-TSN: Enabling event-triggered critical traffic in time-sensitive networking for industrial applications. In <i>Proc. the 42nd International Conference on Distributed Computing Systems</i>, Jul. 2022, pp.691–701. DOI: <a href="http://dx.doi.org/10.1109/ICDCS54860.2022.00072">10.1109/ICDCS54860.2022.00072</a>. </div> </td> </tr> <tr class="document-box" id="b62"> <td valign="top" class="td1"> [62] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Chen D J, Nixon M, Mok A. WirelessHART<span style="line-height:inherit;vertical-align:baseline;">TM</span>: Real-Time Mesh Network for Industrial Automation. Springer, 2010. </div> </td> </tr> <tr class="document-box" id="b63"> <td valign="top" class="td1"> [63] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Saifullah A, Xu Y, Lu C Y, Chen Y X. End-to-end delay analysis for fixed priority scheduling in WirelessHART networks. In <i>Proc. the 17th IEEE Real-Time and Embedded Technology and Applications Symposium</i>, Apr. 2011, pp.13–22. DOI: <a href="http://dx.doi.org/10.1109/RTAS.2011.10">10.1109/RTAS.2011.10</a>. </div> </td> </tr> <tr class="document-box" id="b64"> <td valign="top" class="td1"> [64] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Wang Y J, Qian Z H, Wang G Q, Zhang X. Research on energy-efficient time synchronization algorithm for wireless sensor networks. <i>Journal of Electronics & Information Technology</i>, 2012, 34(9): 2174–2179. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.3724/SP.J.1146.2012.00236" target="_blank">10.3724/SP.J.1146.2012.00236</a>. </div> </td> </tr> <tr class="document-box" id="b65"> <td valign="top" class="td1"> [65] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Huang T, Huang S Z. Low power WirelessHART network time synchronization protocol. Chinese Journal of Electron Devices, 2014, 37(1): 85–88. DOI: <a href="https://doi.org/10.3969/j.issn.1005-9490.2014.01.021">10.3969/j.issn.1005-9490.2014.01.021</a>. (in Chinese) </div> </td> </tr> <tr class="document-box" id="b66"> <td valign="top" class="td1"> [66] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Liang W, Zhang X L, Xiao Y, Wang F Q, Zeng P, Yu H B. Survey and experiments of WIA-PA specification of industrial wireless network. <i>Wireless Communications and Mobile Computing</i>, 2011, 11(8): 1197–1212. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1002/wcm.976" target="_blank">10.1002/wcm.976</a>. </div> </td> </tr> <tr class="document-box" id="b67"> <td valign="top" class="td1"> [67] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> He N, Liu F. Research on time synchronization of WIA-PA industrial wireless networks. In <i>Proc. the 2009 International Conference on Computational Intelligence and Software Engineering</i>, Dec. 2009. DOI: <a href="http://dx.doi.org/10.1109/CISE.2009.5363213">10.1109/CISE.2009.5363213</a>. </div> </td> </tr> <tr class="document-box" id="b68"> <td valign="top" class="td1"> [68] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Rahman M, El-Khatib K. Secure time synchronization for wireless sensor networks based on bilinear pairing functions. <i>IEEE Trans. Parallel and Distributed Systems</i>, 2010. DOI: <a href="https://doi.org/10.1109/TPDS.2010.94">10.1109/TPDS.2010.94</a>. </div> </td> </tr> <tr class="document-box" id="b69"> <td valign="top" class="td1"> [69] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Sivrikaya F, Yener B. Time synchronization in sensor networks: A survey. <i>IEEE Network</i>, 2004, 18(4): 45–50. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/MNET.2004.1316761" target="_blank">10.1109/MNET.2004.1316761</a>. </div> </td> </tr> <tr class="document-box" id="b70"> <td valign="top" class="td1"> [70] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Faizulkhakov Y R. Time synchronization methods for wireless sensor networks: A survey. <i>Programming and Computer Software</i>, 2007, 33(4): 214–226. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1134/S0361768807040044" target="_blank">10.1134/S0361768807040044</a>. </div> </td> </tr> <tr class="document-box" id="b71"> <td valign="top" class="td1"> [71] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Lasassmeh S M, Conrad J M. Time synchronization in wireless sensor networks: A survey. In <i>Proc. the 2010 IEEE SoutheastCon</i>, Mar. 2010, pp.242-245. DOI: <a href="http://dx.doi.org/10.1109/SECON.2010.5453878">10.1109/SECON.2010.5453878</a>. </div> </td> </tr> <tr class="document-box" id="b72"> <td valign="top" class="td1"> [72] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Sarvghadi M A, Wan T C. Message passing based time synchronization in wireless sensor networks: A survey. <i>International Journal of Distributed Sensor Networks</i>, 2016, 12(5): 1280904. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1155/2016/1280904" target="_blank">10.1155/2016/1280904</a>. </div> </td> </tr> <tr class="document-box" id="b73"> <td valign="top" class="td1"> [73] </td> <td class="td2"> <div class="reference-en" style="margin:0px;padding:0px;"> Puttnies H, Danielis P, Sharif A R, Timmermann D. Estimators for time synchronization—Survey, analysis, and outlook. <i>IoT</i>, 2020, 1(2): 398–435. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.3390/iot1020023" target="_blank">10.3390/iot1020023</a>. </div> </td> </tr> </tbody> </table>
[1] Tong Ding, Ning Liu, Zhong-Min Yan, Lei Liu, and Li-Zhen Cui. An Efficient Reinforcement Learning Game Framework for UAV-Enabled Wireless Sensor Network Data Collection [J]. Journal of Computer Science and Technology, 2022, 37(6): 1356-1368.
[2] Yi Wang, Yi-Xue Liu, Shun-Jia Zhu, Xiao-Feng Gao, and Chen Tian. Approximation Designs for Energy Harvesting Relay Deployment in Wireless Sensor Networks [J]. Journal of Computer Science and Technology, 2022, 37(4): 779-796.
[3] Abdalaziz Sawwan and Jie Wu. Energy-Efficient Minimum Mobile Charger Coverage for Wireless Sensor Networks [J]. Journal of Computer Science and Technology, 2022, 37(4): 869-887.
[4] Sven Pullwitt, Robert Hartung, Ulf Kulau, Lars Wolf. Towards Accurate Bit Error Simulation in Wireless Sensor Networks Including Environmental Influences [J]. Journal of Computer Science and Technology, 2020, 35(4): 809-824.
[5] Shou-Wan Gao, Peng-Peng Chen, Xu Yang, Qiang Niu. Multi-Sensor Estimation for Unreliable Wireless Networks with Contention-Based Protocols [J]. Journal of Computer Science and Technology, 2018, 33(5): 1072-1085.
[6] Yawar Abbas Bangash, Ling-Fang Zeng, Dan Feng. MimiBS:Mimicking Base-Station to Provide Location Privacy Protection in Wireless Sensor Networks [J]. , 2017, 32(5): 991-1007.
[7] Hai-Ming Chen, Li Cui, Gang Zhou. A Light-Weight Opportunistic Forwarding Protocol with Optimized Preamble Length for Low-Duty-Cycle Wireless Sensor Networks [J]. , 2017, 32(1): 168-180.
[8] Seyed Mehdi Tabatabaei, Vesal Hakami, Mehdi Dehghan. Cognitive Power Management in Wireless Sensor Networks [J]. , 2015, 30(6): 1306-1317.
[9] Rui Li, Ke-Bin Liu, Xiangyang Li, Yuan He, Wei Xi, Zhi Wang, Ji-Zhong Zhao, Meng Wan. Assessing Diagnosis Approaches for Wireless Sensor Networks: Concepts and Analysis [J]. , 2014, 29(5): 887-900.
[10] Xiao-Long Zheng and Meng Wan. A Survey on Data Dissemination in Wireless Sensor Networks [J]. , 2014, 29(3): 470-486.
[11] Jin-Tao Meng, Jian-Rui Yuan, Sheng-Zhong Feng, and Yan-Jie Wei. An Energy Efficient Clustering Scheme for Data Aggregation in Wireless Sensor Networks [J]. , 2013, 28(3): 564-573.
[12] Mo Chen, (陈默), Student Member, CCF, ACM Ge Yu, (于戈), Senior Member, CCF, Member, ACM, IEEE, Yu Gu (谷峪), Member, CCF, ACM. An Efficient Method for Cleaning Dirty-Events over Uncertain Data in WSNs [J]. , 2011, 26(6): 942-953.
[13] Xiao-Ming Deng (邓晓明) and Yan Xiong (熊焰) Membership IEEE, ACM, CCF. A New Protocol for the Detection of Node Replication Attacks in Mobile Wireless Sensor Networks [J]. , 2011, 26(4): 732-743.
[14] Xiu-Li Ma (马秀莉), Hai-Feng Hu (胡海峰), Shuang-Feng Li (李双峰), Hong-Mei Xiao (肖红梅), Qiong Luo (罗琼), Dong-Qing Yang (杨冬青), Member,CCF, and Shi-Wei Tang (唐世渭), Senior Member, CCF. DHC: Distributed, Hierarchical Clustering in Sensor Networks [J]. , 2011, 26(4): 643-662.
[15] Jun Wang (王珺), Yong-Tao Cao (曹涌涛), Jun-Yuan Xie (谢俊元), Member, CCF, and Shi-Fu Chen (陈世福). Energy Efficient Backoff Hierarchical Clustering Algorithms for Multi-Hop Wireless Sensor Networks [J]. , 2011, 26(2): 283-291.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhou Di;. A Recovery Technique for Distributed Communicating Process Systems[J]. , 1986, 1(2): 34 -43 .
[2] Li Wei;. A Structural Operational Semantics for an Edison Like Language(2)[J]. , 1986, 1(2): 42 -53 .
[3] Li Wanxue;. Almost Optimal Dynamic 2-3 Trees[J]. , 1986, 1(2): 60 -71 .
[4] Liu Mingye; Hong Enyu;. Some Covering Problems and Their Solutions in Automatic Logic Synthesis Systems[J]. , 1986, 1(2): 83 -92 .
[5] C.Y.Chung; H.R.Hwa;. A Chinese Information Processing System[J]. , 1986, 1(2): 15 -24 .
[6] Sun Zhongxiu; Shang Lujun;. DMODULA:A Distributed Programming Language[J]. , 1986, 1(2): 25 -31 .
[7] Chen Shihua;. On the Structure of (Weak) Inverses of an (Weakly) Invertible Finite Automaton[J]. , 1986, 1(3): 92 -100 .
[8] Gao Qingshi; Zhang Xiang; Yang Shufan; Chen Shuqing;. Vector Computer 757[J]. , 1986, 1(3): 1 -14 .
[9] Jin Lan; Yang Yuanyuan;. A Modified Version of Chordal Ring[J]. , 1986, 1(3): 15 -32 .
[10] Pan Qijing;. A Routing Algorithm with Candidate Shortest Path[J]. , 1986, 1(3): 33 -52 .

ISSN 1000-9000(Print)

         1860-4749(Online)
CN 11-2296/TP

Home
Editorial Board
Author Guidelines
Subscription
Journal of Computer Science and Technology
Institute of Computing Technology, Chinese Academy of Sciences
P.O. Box 2704, Beijing 100190 P.R. China
Tel.:86-10-62610746
E-mail: jcst@ict.ac.cn
 
  Copyright ©2015 JCST, All Rights Reserved