<table class="reference-tab" style="background-color:#FFFFFF;width:914.104px;color:#333333;font-family:Calibri, Arial, 微软雅黑, "font-size:16px;">
<tbody>
<tr class="document-box" id="b1">
<td valign="top" class="td1">
[1]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Lévesque M, Tipper D. A survey of clock synchronization over packet-switched networks. <i>IEEE Communications Surveys & Tutorials</i>, 2016, 18(4): 2926–2947. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/COMST.2016.2590438" target="_blank">10.1109/COMST.2016.2590438</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b2">
<td valign="top" class="td1">
[2]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Cintuglu M H, Mohammed O A, Akkaya K, Uluagac A S. A survey on smart grid cyber-physical system testbeds. <i>IEEE Communications Surveys & Tutorials</i>, 2017, 19(1): 446–464. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/COMST.2016.2627399" target="_blank">10.1109/COMST.2016.2627399</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b3">
<td valign="top" class="td1">
[3]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Yadav P, McCann J A, Pereira T. Self-synchronization in duty-cycled Internet of Things (IoT) applications. <i>IEEE Internet of Things Journal</i>, 2017, 4(6): 2058–2069. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JIOT.2017.2757138" target="_blank">10.1109/JIOT.2017.2757138</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b4">
<td valign="top" class="td1">
[4]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
He J P, Cheng P, Shi L, Chen J M. SATS: Secure average-consensus-based time synchronization in wireless sensor networks. <i>IEEE Trans. Signal Processing</i>, 2013, 61(24): 6387–6400. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TSP.2013.2286102" target="_blank">10.1109/TSP.2013.2286102</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b5">
<td valign="top" class="td1">
[5]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Regnath E, Shivaraman N, Shreejith S, Easwaran A, Steinhorst S. Blockchain, what time is it? Trustless datetime synchronization for IoT. In <i>Proc. the 2020 International Conference on Omni-layer Intelligent Systems</i>, Aug. 31–Sept. 2, 2020. DOI: <a href="http://dx.doi.org/10.1109/COINS49042.2020.9191420">10.1109/COINS49042.2020.9191420</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b6">
<td valign="top" class="td1">
[6]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Chalapathi G S S, Chamola V, Guranarayanan S <i>et al</i>. E-SATS: An efficient and simple time synchronization protocol for cluster-based wireless sensor networks. <i>IEEE Sensors Journal</i>, 2019, 19(21): 10144–10156. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JSEN.2019.2922366" target="_blank">10.1109/JSEN.2019.2922366</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b7">
<td valign="top" class="td1">
[7]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Richards D, Abdelgawad A, Yelamarthi K. How does encryption influence timing in IoT? In <i>Proc. the 2018 IEEE Global Conference on Internet of Things</i>, Dec. 2018. DOI: <a href="http://dx.doi.org/10.1109/GCIoT.2018.8620133">10.1109/GCIoT.2018.8620133</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b8">
<td valign="top" class="td1">
[8]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Zhang K, Liang X H, Lu R X, Shen X M. Sybil attacks and their defenses in the Internet of Things. <i>IEEE Internet of Things Journal</i>, 2014, 1(5): 372–383. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JIOT.2014.2344013" target="_blank">10.1109/JIOT.2014.2344013</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b9">
<td valign="top" class="td1">
[9]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Qiu T, Liu X Z, Han M, Ning H S, Wu D O. A secure time synchronization protocol against fake timestamps for large-scale Internet of Things. <i>IEEE Internet of Things Journal</i>, 2017, 4(6): 1879–1889. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JIOT.2017.2714904" target="_blank">10.1109/JIOT.2017.2714904</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b10">
<td valign="top" class="td1">
[10]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Elson J, Girod L, Estrin D. Fine-grained network time synchronization using reference broadcasts. In <i>Proc. the 5th Symposium on Operating Systems Design and Implementation</i>, Dec. 2002, pp.147–163.
</div>
</td>
</tr>
<tr class="document-box" id="b11">
<td valign="top" class="td1">
[11]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Beke T, Dijk E, Ozcelebi T, Verhoeven R. Time synchronization in IoT mesh networks. In <i>Proc. the 2020 International Symposium on Networks, Computers and Communications</i>, Oct. 2020. DOI: <a href="http://dx.doi.org/10.1109/ISNCC49221.2020.9297296">10.1109/ISNCC49221.2020.9297296</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b12">
<td valign="top" class="td1">
[12]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Mani S K, Durairajan R, Barford P, Sommers J. An architecture for IoT clock synchronization. In <i>Proc. the 8th International Conference on the Internet of Things</i>, Oct. 2018, p.17. DOI: <a href="http://dx.doi.org/10.1145/3277593.3277606">10.1145/3277593.3277606</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b13">
<td valign="top" class="td1">
[13]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Shi F R, Tuo X G, Yang S X, Lu J, Li H L. Rapid-flooding time synchronization for large-scale wireless sensor networks. <i>IEEE Trans. Industrial Informatics</i>, 2020, 16(3): 1581–1590. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TII.2019.2927292" target="_blank">10.1109/TII.2019.2927292</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b14">
<td valign="top" class="td1">
[14]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Ferrari F, Zimmerling M, Thiele L, Saukh O. Efficient network flooding and time synchronization with glossy. In <i>Proc. the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks</i>, Apr. 2011, pp.73–84.
</div>
</td>
</tr>
<tr class="document-box" id="b15">
<td valign="top" class="td1">
[15]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Huan X T, Kim K S. Per-hop delay compensation in time synchronization for multi-hop wireless sensor networks based on packet-relaying gateways. <i>IEEE Communications Letters</i>, 2020, 24(10): 2300–2304. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/LCOMM.2020.3002705" target="_blank">10.1109/LCOMM.2020.3002705</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b16">
<td valign="top" class="td1">
[16]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Jia P Y, Wang X B, Shen X M. Digital-twin-enabled intelligent distributed clock synchronization in industrial IoT systems. <i>IEEE Internet of Things Journal</i>, 2021, 8(6): 4548–4559. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JIOT.2020.3029131" target="_blank">10.1109/JIOT.2020.3029131</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b17">
<td valign="top" class="td1">
[17]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Jia P Y, Wang X B, Shen X M. Passive network synchronization based on concurrent observations in industrial IoT systems. <i>IEEE Internet of Things Journal</i>, 2021, 8(18): 14028–14038. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JIOT.2021.3070242" target="_blank">10.1109/JIOT.2021.3070242</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b18">
<td valign="top" class="td1">
[18]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Zhu S P, Zheng X L, Liu L, Ma H D. AirSync: Time synchronization for large-scale IoT networks using aircraft signals. In <i>Proc. the 17th Annual IEEE International Conference on Sensing, Communication, and Networking</i>, Jun. 2020. DOI: <a href="http://dx.doi.org/10.1109/SECON48991.2020.9158433">10.1109/SECON48991.2020.9158433</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b19">
<td valign="top" class="td1">
[19]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Nishi H, Song E Y, Nakamura Y, Lee K B, Liu Y C, Tsang K F. Time synchronization of IEEE P1451.0 and P1451.1.6 standard-based sensor networks. In <i>Proc. the 47th Annual Conference of the IEEE Industrial Electronics Society</i>, Oct. 2021. DOI: <a href="http://dx.doi.org/10.1109/IECON48115.2021.9589904">10.1109/IECON48115.2021.9589904</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b20">
<td valign="top" class="td1">
[20]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Huan X T, Kim K S, Lee S, Lim E G, Marshall A. A beaconless asymmetric energy-efficient time synchronization scheme for resource-constrained multi-hop wireless sensor networks. <i>IEEE Trans. Communications</i>, 2020, 68(3): 1716–1730. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TCOMM.2019.2960344" target="_blank">10.1109/TCOMM.2019.2960344</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b21">
<td valign="top" class="td1">
[21]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Huan X T, Kim K S, Zhang J Q. NISA: Node identification and spoofing attack detection based on clock features and radio information for wireless sensor networks. <i>IEEE Trans. Communications</i>, 2021, 69(7): 4691–4703. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TCOMM.2021.3071448" target="_blank">10.1109/TCOMM.2021.3071448</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b22">
<td valign="top" class="td1">
[22]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Bhandari S, Wang X B. Prioritized clock synchronization for event critical applications in wireless IoT networks. <i>IEEE Sensors Journal</i>, 2019, 19(16): 7120–7128. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JSEN.2019.2912938" target="_blank">10.1109/JSEN.2019.2912938</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b23">
<td valign="top" class="td1">
[23]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Schmid T, Shea R, Charbiwala Z, Friedman J, Srivastava M B, Cho Y H. On the interaction of clocks, power, and synchronization in duty-cycled embedded sensor nodes. <i>ACM Trans. Sensor Networks</i>, 2010, 7(3): Article No. 24. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1145/1807048.1807053" target="_blank">10.1145/1807048.1807053</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b24">
<td valign="top" class="td1">
[24]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Yang S J, Xu C Q, Guan J F, Zhang T. Event-based diffusion Kalman filter strategy for clock synchronization in WSNs. In <i>Proc. the 2018 International Conference on Networking and Network Applications</i>, Oct. 2018, pp.270–276. DOI: <a href="http://dx.doi.org/10.1109/NANA.2018.8648770">10.1109/NANA.2018.8648770</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b25">
<td valign="top" class="td1">
[25]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Jia P Y, Wang X B, Zheng K. Distributed clock synchronization based on intelligent clustering in local area industrial IoT systems. <i>IEEE Trans. Industrial Informatics</i>, 2020, 16(6): 3697–3707. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TII.2019.2937331" target="_blank">10.1109/TII.2019.2937331</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b26">
<td valign="top" class="td1">
[26]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Wang Z W, Zeng P, Kong L H, Li D, Jin X. Node-identification-based secure time synchronization in industrial wireless sensor networks. <i>Sensors</i>, 2018, 18(8): 2718. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.3390/s18082718" target="_blank">10.3390/s18082718</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b27">
<td valign="top" class="td1">
[27]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Wu J, Zhang L Y, Bai Y, Sun Y S. Cluster-based consensus time synchronization for wireless sensor networks. <i>IEEE Sensors Journal</i>, 2015, 15(3): 1404–1413. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JSEN.2014.2363471" target="_blank">10.1109/JSEN.2014.2363471</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b28">
<td valign="top" class="td1">
[28]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Kadambar S, Chavva A K R. Low complexity ML synchronization for 3GPP NB-IoT. In <i>Proc. the 2018 International Conference on Signal Processing and Communications</i>, Jul. 2018, pp.307–311. DOI: <a href="http://dx.doi.org/10.1109/SPCOM.2018.8724439">10.1109/SPCOM.2018.8724439</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b29">
<td valign="top" class="td1">
[29]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Dian F J, Yousefi A, Somaratne K. A study in accuracy of time synchronization of BLE devices using connection-based event. In <i>Proc. the 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference</i>, Oct. 2017, pp.595–601. DOI: <a href="http://dx.doi.org/10.1109/IEMCON.2017.8117156">10.1109/IEMCON.2017.8117156</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b30">
<td valign="top" class="td1">
[30]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Gore R N, Lisova E, Åkerberg J, Björkman M. CoSiNeT: A lightweight clock synchronization algorithm for industrial IoT. In <i>Proc. the 4th IEEE International Conference on Industrial Cyber-Physical Systems</i>, May 2021, pp.92–97. DOI: <a href="http://dx.doi.org/10.1109/ICPS49255.2021.9468174">10.1109/ICPS49255.2021.9468174</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b31">
<td valign="top" class="td1">
[31]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Sommer P, Wattenhofer R. Gradient clock synchronization in wireless sensor networks. In <i>Proc. the 2009 International Conference on Information Processing in Sensor Networks</i>, Apr. 2009, pp.37–48.
</div>
</td>
</tr>
<tr class="document-box" id="b32">
<td valign="top" class="td1">
[32]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Li Y, Chen S, Lin F J. A coarse timing synchronization method of low SNR OFDM systems for IoT. In <i>Proc. the 2018 IEEE International Conference on Integrated Circuits, Technologies and Applications</i>, Nov. 2018, pp.166–167. DOI: <a href="http://dx.doi.org/10.1109/CICTA.2018.8705961">10.1109/CICTA.2018.8705961</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b33">
<td valign="top" class="td1">
[33]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Alvarez M A, Spagnolini U. Collision vs non-collision distributed time synchronization for dense IoT deployments. In <i>Proc. the 2017 IEEE International Conference on Communications</i>, May 2017. DOI: <a href="http://dx.doi.org/10.1109/ICC.2017.7997469">10.1109/ICC.2017.7997469</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b34">
<td valign="top" class="td1">
[34]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Idrees Z, Granados J, Sun Y, Latif S, Gong L, Zou Z, Zheng L R. IEEE 1588 for clock synchronization in industrial IoT and related applications: A review on contributing technologies, protocols and enhancement methodologies. <i>IEEE Access</i>, 2020, 8: 155660–155678. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/ACCESS.2020.3013669" target="_blank">10.1109/ACCESS.2020.3013669</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b35">
<td valign="top" class="td1">
[35]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Djenouri D. <i>R <span style="line-height:inherit;vertical-align:baseline;">4</span>Syn</i>: Relative referenceless receiver/receiver time synchronization in wireless sensor networks. <i>IEEE Signal Processing Letters</i>, 2012, 19(4): 175–178. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/LSP.2012.2185491" target="_blank">10.1109/LSP.2012.2185491</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b36">
<td valign="top" class="td1">
[36]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Cheng S Y, Cai Z P, Li J Z, Gao H. Extracting kernel dataset from big sensory data in wireless sensor networks. <i>IEEE Trans. Knowledge and Data Engineering</i>, 2017, 29(4): 813–827. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TKDE.2016.2645212" target="_blank">10.1109/TKDE.2016.2645212</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b37">
<td valign="top" class="td1">
[37]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Su W, Akyildiz I F. Time-diffusion synchronization protocol for wireless sensor networks. <i>IEEE/ACM Trans. Networking</i>, 2005, 13(2): 384–397. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TNET.2004.842228" target="_blank">10.1109/TNET.2004.842228</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b38">
<td valign="top" class="td1">
[38]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Gong F Y, Sichitiu M L. CESP: A low-power high-accuracy time synchronization protocol. <i>IEEE Trans. Vehicular Technology</i>, 2016, 65(4): 2387–2396. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TVT.2015.2417810" target="_blank">10.1109/TVT.2015.2417810</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b39">
<td valign="top" class="td1">
[39]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Resner D, Fröhlich A A, Wanner L F. Speculative precision time protocol: Submicrosecond clock synchronization for the IoT. In <i>Proc. the 21st International Conference on Emerging Technologies and Factory Automation</i>, Sept. 2016. DOI: <a href="http://dx.doi.org/10.1109/ETFA.2016.7733533">10.1109/ETFA.2016.7733533</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b40">
<td valign="top" class="td1">
[40]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Raju N, Hasan K F. A feasibility study on SNTP and SPoT protocols on time synchronization in Internet of Things. arXiv: 2010.09219, 2020. <a href="https://arxiv.org/abs/2010.09219">https://arxiv.org/abs/2010.09219</a>, Dec. 2022.
</div>
</td>
</tr>
<tr class="document-box" id="b41">
<td valign="top" class="td1">
[41]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Bansal M, Gupta A. Out-degree based clock synchronization in wireless networks using precision time protocol. In <i>Proc. the 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems</i>, Dec. 2018. DOI: <a href="http://dx.doi.org/10.1109/ANTS.2018.8710042">10.1109/ANTS.2018.8710042</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b42">
<td valign="top" class="td1">
[42]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Maróti M, Kusy B, Simon S, Lédeczi Á. The flooding time synchronization protocol. In <i>Proc. the 2nd International Conference on Embedded Networked Sensor Systems</i>, Nov. 2004, pp.39–49. DOI: <a href="http://dx.doi.org/10.1145/1031495.1031501">10.1145/1031495.1031501</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b43">
<td valign="top" class="td1">
[43]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Sheu J P, Hu W K, Lin J C. Ratio-based time synchronization protocol in wireless sensor networks. <i>Telecommunication Systems</i>, 2008, 39(1): 25–35. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1007/s11235-008-9081-5" target="_blank">10.1007/s11235-008-9081-5</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b44">
<td valign="top" class="td1">
[44]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Kim K S, Lee S, Lim E G. Energy-efficient time synchronization based on asynchronous source clock frequency recovery and reverse two-way message exchanges in wireless sensor networks. <i>IEEE Trans. Communications</i>, 2017, 65(1): 347–359. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TCOMM.2016.2626281" target="_blank">10.1109/TCOMM.2016.2626281</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b45">
<td valign="top" class="td1">
[45]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Noh K L, Serpedin E, Qaraqe K. A new approach for time synchronization in wireless sensor networks: Pairwise broadcast synchronization. <i>IEEE Trans. Wireless Communications</i>, 2008, 7(9): 3318–3322. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TWC.2008.070343" target="_blank">10.1109/TWC.2008.070343</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b46">
<td valign="top" class="td1">
[46]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Qiu T, Chi L, Guo W <i>et al</i>. STETS: A novel energy-efficient time synchronization scheme based on embedded networking devices. <i>Microprocessors and Microsystems</i>, 2015, 39(8): 1285–1295. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1016/j.micpro.2015.07.006" target="_blank">10.1016/j.micpro.2015.07.006</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b47">
<td valign="top" class="td1">
[47]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Qiu T, Zhang Y S, Qiao D J, Zhang X Y, Wymore M L, Sangaiah A K. A robust time synchronization scheme for Industrial Internet of Things. <i>IEEE Trans. Industrial Informatics</i>, 2018, 14(8): 3570–3580. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TII.2017.2738842" target="_blank">10.1109/TII.2017.2738842</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b48">
<td valign="top" class="td1">
[48]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Navas R E, Toutain L. LATe: A lightweight authenticated time synchronization protocol for IoT. In <i>Proc. the 2018 Global Internet of Things Summit</i>, Jun. 2018. DOI: <a href="http://dx.doi.org/10.1109/GIOTS.2018.8534565">10.1109/GIOTS.2018.8534565</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b49">
<td valign="top" class="td1">
[49]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Fan K, Wang S Y, Ren Y H, Yang K, Yan Z, Li H, Yang Y T. Blockchain-based secure time protection scheme in IoT. <i>IEEE Internet of Things Journal</i>, 2019, 6(3): 4671–4679. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/JIOT.2018.2874222" target="_blank">10.1109/JIOT.2018.2874222</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b50">
<td valign="top" class="td1">
[50]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
He J P, Cheng P, Shi L, Chen J M, Sun Y X. Time synchronization in WSNs: A maximum-value-based consensus approach. <i>IEEE Trans. Automatic Control</i>, 2014, 59(3): 660–675. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TAC.2013.2286893" target="_blank">10.1109/TAC.2013.2286893</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b51">
<td valign="top" class="td1">
[51]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Schenato L, Fiorentin F. Average TimeSynch: A consensus-based protocol for clock synchronization in wireless sensor networks. <i>Automatica</i>, 2011, 47(9): 1878–1886. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1016/j.automatica.2011.06.012" target="_blank">10.1016/j.automatica.2011.06.012</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b52">
<td valign="top" class="td1">
[52]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Wang Z W, Zeng P, Zhou M T, Li D, Wang J T. Cluster-based maximum consensus time synchronization for industrial wireless sensor networks. <i>Sensors</i>, 2017, 17(1): 141. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.3390/s17010141" target="_blank">10.3390/s17010141</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b53">
<td valign="top" class="td1">
[53]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Shivaraman N, Schuster P, Ramanathan S, Easwaran A, Steinhorst S. C-Sync: The resilient time synchronization protocol. In <i>Proc. the 19th ACM/IEEE International Conference on Information Processing in Sensor Networks </i>(<i>poster</i>), Apr. 2020, pp.333–334. DOI: <a href="http://dx.doi.org/10.1109/IPSN48710.2020.00-20">10.1109/IPSN48710.2020.00-20</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b54">
<td valign="top" class="td1">
[54]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Hu X, Park T, Shin K G. Attack-tolerant time-synchronization in wireless sensor networks. In <i>Proc. the 27th Conference on Computer Communications</i>, Apr. 2008, pp.41–45. DOI: <a href="http://dx.doi.org/10.1109/INFOCOM.2008.17">10.1109/INFOCOM.2008.17</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b55">
<td valign="top" class="td1">
[55]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
He J P, Chen J M, Cheng P, Cao X H. Secure time synchronization in wireless sensor networks: A maximum consensus-based approach. <i>IEEE Trans. Parallel and Distributed Systems</i>, 2014, 25(4): 1055–1065. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TPDS.2013.150" target="_blank">10.1109/TPDS.2013.150</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b56">
<td valign="top" class="td1">
[56]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Feld J. PROFINET-scalable factory communication for all applications. In <i>Proc. the 2004 IEEE International Workshop on Factory Communication Systems</i>, Sept. 2004, pp.33–38. DOI: <a href="http://dx.doi.org/10.1109/WFCS.2004.1377673">10.1109/WFCS.2004.1377673</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b57">
<td valign="top" class="td1">
[57]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Fontanelli D, Macii D, Rinaldi S, Ferrari P, Flammini A. Performance analysis of a clock state estimator for PROFINET IO IRT synchronization. In <i>Proc. the 2013 IEEE International Instrumentation and Measurement Technology Conference</i>, May 2013, pp.1828–1833. DOI: <a href="http://dx.doi.org/10.1109/I2MTC.2013.6555730">10.1109/I2MTC.2013.6555730</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b58">
<td valign="top" class="td1">
[58]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Ferrari P, Flammini A, Marioli D, Rinaldi S, Sisinni E, Taroni A, Venturini F. Clock synchronization of PTP-based devices through PROFINET IO networks. In <i>Proc. the 2008 IEEE International Conference on Emerging Technologies and Factory Automation</i>, Sept. 2008, pp.496–499. DOI: <a href="http://dx.doi.org/10.1109/ETFA.2008.4638445">10.1109/ETFA.2008.4638445</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b59">
<td valign="top" class="td1">
[59]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Ferrari P, Flammini A, Rinaldi S, Sisinni E. On the seamless interconnection of IEEE1588-based devices using a PROFINET IO infrastructure. <i>IEEE Trans. Industrial Informatics</i>, 2010, 6(3): 381–392. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TII.2010.2051954" target="_blank">10.1109/TII.2010.2051954</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b60">
<td valign="top" class="td1">
[60]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Val I, Seijo ó, Torrego R, Astarloa A. IEEE 802.1AS clock synchronization performance evaluation of an integrated wired-wireless TSN architecture. <i>IEEE Trans. Industrial Informatics</i>, 2022, 18(5): 2986–2999. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/TII.2021.3106568" target="_blank">10.1109/TII.2021.3106568</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b61">
<td valign="top" class="td1">
[61]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Zhao Y, Yang Z, He X W, Wu J H, Cao H, Dong L, Dang F, Liu Y H. E-TSN: Enabling event-triggered critical traffic in time-sensitive networking for industrial applications. In <i>Proc. the 42nd International Conference on Distributed Computing Systems</i>, Jul. 2022, pp.691–701. DOI: <a href="http://dx.doi.org/10.1109/ICDCS54860.2022.00072">10.1109/ICDCS54860.2022.00072</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b62">
<td valign="top" class="td1">
[62]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Chen D J, Nixon M, Mok A. WirelessHART<span style="line-height:inherit;vertical-align:baseline;">TM</span>: Real-Time Mesh Network for Industrial Automation. Springer, 2010.
</div>
</td>
</tr>
<tr class="document-box" id="b63">
<td valign="top" class="td1">
[63]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Saifullah A, Xu Y, Lu C Y, Chen Y X. End-to-end delay analysis for fixed priority scheduling in WirelessHART networks. In <i>Proc. the 17th IEEE Real-Time and Embedded Technology and Applications Symposium</i>, Apr. 2011, pp.13–22. DOI: <a href="http://dx.doi.org/10.1109/RTAS.2011.10">10.1109/RTAS.2011.10</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b64">
<td valign="top" class="td1">
[64]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Wang Y J, Qian Z H, Wang G Q, Zhang X. Research on energy-efficient time synchronization algorithm for wireless sensor networks. <i>Journal of Electronics & Information Technology</i>, 2012, 34(9): 2174–2179. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.3724/SP.J.1146.2012.00236" target="_blank">10.3724/SP.J.1146.2012.00236</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b65">
<td valign="top" class="td1">
[65]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Huang T, Huang S Z. Low power WirelessHART network time synchronization protocol. Chinese Journal of Electron Devices, 2014, 37(1): 85–88. DOI: <a href="https://doi.org/10.3969/j.issn.1005-9490.2014.01.021">10.3969/j.issn.1005-9490.2014.01.021</a>. (in Chinese)
</div>
</td>
</tr>
<tr class="document-box" id="b66">
<td valign="top" class="td1">
[66]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Liang W, Zhang X L, Xiao Y, Wang F Q, Zeng P, Yu H B. Survey and experiments of WIA-PA specification of industrial wireless network. <i>Wireless Communications and Mobile Computing</i>, 2011, 11(8): 1197–1212. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1002/wcm.976" target="_blank">10.1002/wcm.976</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b67">
<td valign="top" class="td1">
[67]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
He N, Liu F. Research on time synchronization of WIA-PA industrial wireless networks. In <i>Proc. the 2009 International Conference on Computational Intelligence and Software Engineering</i>, Dec. 2009. DOI: <a href="http://dx.doi.org/10.1109/CISE.2009.5363213">10.1109/CISE.2009.5363213</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b68">
<td valign="top" class="td1">
[68]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Rahman M, El-Khatib K. Secure time synchronization for wireless sensor networks based on bilinear pairing functions. <i>IEEE Trans. Parallel and Distributed Systems</i>, 2010. DOI: <a href="https://doi.org/10.1109/TPDS.2010.94">10.1109/TPDS.2010.94</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b69">
<td valign="top" class="td1">
[69]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Sivrikaya F, Yener B. Time synchronization in sensor networks: A survey. <i>IEEE Network</i>, 2004, 18(4): 45–50. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1109/MNET.2004.1316761" target="_blank">10.1109/MNET.2004.1316761</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b70">
<td valign="top" class="td1">
[70]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Faizulkhakov Y R. Time synchronization methods for wireless sensor networks: A survey. <i>Programming and Computer Software</i>, 2007, 33(4): 214–226. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1134/S0361768807040044" target="_blank">10.1134/S0361768807040044</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b71">
<td valign="top" class="td1">
[71]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Lasassmeh S M, Conrad J M. Time synchronization in wireless sensor networks: A survey. In <i>Proc. the 2010 IEEE SoutheastCon</i>, Mar. 2010, pp.242-245. DOI: <a href="http://dx.doi.org/10.1109/SECON.2010.5453878">10.1109/SECON.2010.5453878</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b72">
<td valign="top" class="td1">
[72]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Sarvghadi M A, Wan T C. Message passing based time synchronization in wireless sensor networks: A survey. <i>International Journal of Distributed Sensor Networks</i>, 2016, 12(5): 1280904. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.1155/2016/1280904" target="_blank">10.1155/2016/1280904</a>.
</div>
</td>
</tr>
<tr class="document-box" id="b73">
<td valign="top" class="td1">
[73]
</td>
<td class="td2">
<div class="reference-en" style="margin:0px;padding:0px;">
Puttnies H, Danielis P, Sharif A R, Timmermann D. Estimators for time synchronization—Survey, analysis, and outlook. <i>IoT</i>, 2020, 1(2): 398–435. DOI: <a class="mainColor ref-doi" href="http://dx.doi.org/10.3390/iot1020023" target="_blank">10.3390/iot1020023</a>.
</div>
</td>
</tr>
</tbody>
</table> |