Special Issue: Artificial Intelligence and Pattern Recognition

• Articles •     Next Articles

Knowledge Map: Mathematical Model and Dynamic Behaviors

Hai Zhuge and Xiang-Feng Luo   

  1. China Knowledge Grid Research Group, Key Lab of Intelligent Information Processing
    Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, P.R. China
  • Received:2004-09-27 Revised:2005-03-11 Online:2005-05-10 Published:2005-05-10

Knowledge representation and reasoning is a key issue of the Knowledge Grid. This paper proposes a Knowledge Map (KM) model for representing and reasoning causal knowledge as an overlay in the Knowledge Grid. It extends Fuzzy Cognitive Maps (FCMs) to represent andreason not only simple cause-effect relations, but also time-delaycausal relations, conditional probabilistic causal relations andsequential relations. The mathematical model and dynamic behaviors ofKM are presented. Experiments show that, under certain conditions, thedynamic behaviors of KM can translate between different states. Knowingthis condition, experts can control or modify the constructed KM whileits dynamic behaviors do not accord with their expectation. Simulationsand applications show that KM is more powerful and natural than FCM inemulating real world.

Key words: Rendevous; packet-switching interface; message-passing protocols; interprocess communication and synchronization; high-level primitive; parallel programming language; interconnection network;



[1]Stylios C D, Groumpos P P. Fuzzy cognitive maps: A softcomputing technique for intelligent control. In Proc. IEEEInt. Symp. Intelligent Control, Patras, 2000, pp.97--102.

[2] Miao Y, Liu Z Q. On causal inference in fuzzy cognitive maps. IEEE Trans. Fuzzy System, 2000, 8(1): 107--119.

[3] Miao Y, Liu Z Q et al. Dynamic cognitive network. IEEETrans. Fuzzy System, 2001, 9(5): 760--770.

[4] Hagiwara M. Extended fuzzy cognitive maps. In Proc. IEEEInt. Conf. Fuzzy System, San Diego,1992, pp.795--801.

[5] Kosko B. Fuzzy Engineering. Prentice Hall, 1997.

[6] Chaib-draa B. Causal maps: Theory, implementation and practicalapplications in multi-agent environments. IEEE Trans. Knowledge andData Engineering, 2002, 14(6): 1--17.

[7] Pelaez C E, Bowles J B. Applying fuzzy cognitive maps knowledgerepresentation to failure modes effects analysis. In Proc. AnnualReliability and Maintainability Symposium, 1995, pp,450--456.

[8] Liu Z Q, Satur R. Contextual fuzzy cognitive maps for decisionsupport in geographic information systems. IEEE Trans. FuzzySystems, 1999, 7(10): 495--502.

[9] Satur R, Liu Z Q. A contextual fuzzy cognitive maps framework forgeographic information systems. IEEE Trans. Fuzzy Systems, 1999,7(10): 481--494.

[10] Noha J B, Lee K C. A case-based reasoning approach to cognitivemaps-driven tacit knowledge management. Expert Systems withApplications, 2000, 19: 249--259.

[11] Groumpos P P, Stylios C D. Modeling supervisory control systemsusing fuzzy cognitive maps. Chaos Solitons and Fractals, 2000,11: 329--336.

[12] Stylios C D, Groumpos P P. The challenge of modeling supervisorysystems using fuzzy cognitive maps. Journal of IntelligentManufacturing, 1999, 9: 339--345.

[13] Dickerson J A, Kosko B. Virtual worlds as fuzzy dynamicalsystems. Spring, 1994, 3(2): 173--189.

[14] Leea K C, Lee S A. Cognitive maps simulation approach toadjusting the design factors of the electronic commerce web sites. Expert Systems with Applications, 2003, 24: 1--11.

[15] Zhuge H, Luo X F. Knowledge map model. The Third Int.Conf. Grid and Cooperative Computing (GCC2004),Lecture Notes in Computer Science 3251/2004, pp.381--388.

[16] Obata T, Hagiwara M. Neural cognitive maps.Http://citeseer.ist.psu.edu/.

[17] Zhuge H. China's E-Science Knowledge Grid Environment. IEEEIntelligent Systems, 2004, 19(1): 13--17.
[1] Wei-Bei Fan, Jian-Xi Fan, Cheng-Kuan Lin, Yan Wang, Yue-Juan Han, Ru-Chuan Wang. Optimally Embedding 3-Ary n-Cubes into Grids [J]. Journal of Computer Science and Technology, 2019, 34(2): 372-387.
[2] Xi Wang, Jian-Xi Fan, Cheng-Kuan Lin, Jing-Ya Zhou, Zhao Liu. BCDC: A High-Performance, Server-Centric Data Center Network [J]. , 2018, 33(2): 400-416.
[3] Dong-Fang Zhou, Jian-Xi Fan, Cheng-Kuan Lin, Bao-Lei Cheng, Jing-Ya Zhou, Zhao Liu. Optimal Path Embedding in the Exchanged Crossed Cube [J]. , 2017, 32(3): 618-629.
[4] Wen-Tao Bao, Bin-Zhang Fu, Ming-Yu Chen, Li-Xin Zhang. A High-Performance and Cost-Effcient Interconnection Network for High-Density Servers [J]. , 2014, 29(2): 281-292.
[5] Tiziana Calamoneri, Saverio Caminiti, and Rossella Petreschi. A General Approach to {\it\bfseries L$($h,k$)$}-Label Interconnection Networks [J]. , 2008, 23(4 ): 652-659 .
[6] Shu-Ming Zhou and Wen-Jun Xiao. A New Family of Interconnection Networks of Fixed Degree Three [J]. , 2004, 19(2): 0-0.
[7] Gao-Cai Wang, Jian-Er Chen, and Guo-Jun Wang. On Fault Tolerance of 3-Dimensional Mesh Networks [J]. , 2004, 19(2): 0-0.
[8] WANG Xiaodong; XU Ming; ZHOU Xingming;. Fast Multicast on Multistage Interconnection Networks Using Multi-Head Worms [J]. , 1999, 14(3): 250-258.
[9] WANG Deqiang; ZHAO Lianchang;. The Twisted-Cube Connected Networks [J]. , 1999, 14(2): 181-187.
[10] XIAO Limin; ZHU Mingfa;. Exploiting the Capabilities of the Interconnection Network on Dawning-1000 [J]. , 1999, 14(1): 49-55.
[11] Zhou Yingquan; Min Yinghua;. A Kind of Multistage Interconnection Networks with Multiple Paths [J]. , 1996, 11(4): 395-404.
[12] Liao Xianzhi; Jin Lan;. Rendezvous Facilities in a Distributed Computer System [J]. , 1995, 10(2): 188-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Liu Mingye; Hong Enyu;. Some Covering Problems and Their Solutions in Automatic Logic Synthesis Systems[J]. , 1986, 1(2): 83 -92 .
[2] Chen Shihua;. On the Structure of (Weak) Inverses of an (Weakly) Invertible Finite Automaton[J]. , 1986, 1(3): 92 -100 .
[3] Gao Qingshi; Zhang Xiang; Yang Shufan; Chen Shuqing;. Vector Computer 757[J]. , 1986, 1(3): 1 -14 .
[4] Chen Zhaoxiong; Gao Qingshi;. A Substitution Based Model for the Implementation of PROLOG——The Design and Implementation of LPROLOG[J]. , 1986, 1(4): 17 -26 .
[5] Huang Heyan;. A Parallel Implementation Model of HPARLOG[J]. , 1986, 1(4): 27 -38 .
[6] Min Yinghua; Han Zhide;. A Built-in Test Pattern Generator[J]. , 1986, 1(4): 62 -74 .
[7] Tang Tonggao; Zhao Zhaokeng;. Stack Method in Program Semantics[J]. , 1987, 2(1): 51 -63 .
[8] Min Yinghua;. Easy Test Generation PLAs[J]. , 1987, 2(1): 72 -80 .
[9] Zhu Hong;. Some Mathematical Properties of the Functional Programming Language FP[J]. , 1987, 2(3): 202 -216 .
[10] Li Minghui;. CAD System of Microprogrammed Digital Systems[J]. , 1987, 2(3): 226 -235 .

ISSN 1000-9000(Print)

         1860-4749(Online)
CN 11-2296/TP

Home
Editorial Board
Author Guidelines
Subscription
Journal of Computer Science and Technology
Institute of Computing Technology, Chinese Academy of Sciences
P.O. Box 2704, Beijing 100190 P.R. China
Tel.:86-10-62610746
E-mail: jcst@ict.ac.cn
 
  Copyright ©2015 JCST, All Rights Reserved