• Machine Learning and Data Mining • Previous Articles     Next Articles

Cluster-Based Nearest-Neighbour Classifier and Its Application on the Lightning Classification

Loris Nanni and Alessandra Lumini   

  1. DEIS, IEIIT-CNR, Universit\`a di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
  • Received:2007-08-20 Revised:2008-04-16 Online:2008-07-10 Published:2008-07-10

The problem addressed in this paper concerns the prototype generation for a cluster-based nearest-neighbour classifier. It considers, to classify a test pattern, the lines that link the patterns of the training set and a set of prototypes. An efficient method based on clustering is here used for finding subgroups of similar patterns with centroid being used as prototype. A learning method is used for iteratively adjusting both position and local-metric of the prototypes. Finally, we show that a simple adaptive distance measure improves the performance of our nearest-neighbour-based classifier. The performance improvement with respect to other nearest-neighbour-based classifiers is validated by testing our method on a lightning classification task using data acquired from the Fast On-orbit Recording of Transient Events (FORTE) satellite, moreover the performance improvement is validated through experiments with several benchmark datasets. The performance of the proposed methods are also validated using the Wilcoxon Signed-Rank test.

Key words: built-in self-test (BIST); at-speed testing; high-level synthesis; data path;


[1] Parades R, Vidal E. Learning prototypes and distances: A prototype reduction technique based on nearest neighbor error minimization. {\it Pattern Recognition}, 2006, 39: 180--188.
[2]} Cover T M, Hart P E. Nearest neighbor pattern classification. {\it IEEE Transactions on Information Theory}, January 1967, 13: 21--27.
[3]} Franco A, Maltoni D, Nanni L. Reward-punishment editing. {\it In Proc. International Conference on Pattern Recognition $($ICPR04$)$}, Cambridge, UK, August 2004, pp.424--427.
[4]} Hart P. The condensed NN rule. {\it IEEE Trans. Information Theory}, May 1968, 14(3): 515--516.
[5]} Zhu H, Basir O. An adaptive fuzzy evidential nearest neighbour formulation for classifying remote sensing images. {\it IEEE Trans. Geosci. Remote Sens}., Aug. 2005, 43(8): 1874--1889.
[6]} Keller J M, Gray M R, Givens J A. A fuzzy k-nearest neighbour algorithm. {\it IEEE Trans. Syst., Man, Cybern}., 1995, 25(5): 804--813.
[7]} Ghosh A K, Chaudhuri P, Murthy C A. On visualization and aggregation of nearest neighbor classifiers. {\it IEEE Trans. Pattern Anal. Mach. Intell}., Oct. 2005, 27(10): 1592--1602.
[8]} Ghosh A K, Chaudhuri P, Murthy C A. Multiscale classification using nearest neighbor density estimates. {\it IEEE Trans. Syst., Man, Cybern}., 2006, 36(5): 1139--1148.
[9]} Li B, Chen Y. The nearest neighbor algorithm of local probability centers. {\it IEEE Transactions on Systems, Man, and Cybernetics}, Part B, 2008, 38(1): 141--154.
[10]} Friedman J. Flexible metric nearest neighbor classification. Tech. Rep.113, Stanford University, 1994.
[11]} Hastie T, Tibshirani R. Discriminant adaptive nearest neighbor classification. {\it IEEE Trans. PAMI}, 1996, 18(6): 607--615.
[12]} Domeniconi C, Peng J, Gunopulos D. Locally adaptive metric nearest neighbor classification. {\it IEEE Trans. PAMI}, 2004, 24: 1281--1285.
[13]} Pedreira C. Learning vector quantization with training data selection. {\it IEEE Trans. PAMI}, 2006, 18(1): 157--162.
[14]} Wang J, Neskovic P, Cooper L N. Improving nearest neighbor rule with a simple adaptive distance measure. {\it Pattern Recognition Letters}, 2007, 28(2): 207--213.
[15]} Li S Z, Lu J. Face Recognition using the nearest feature line method. {\it IEEE Trans. Neural Networks}, 1999, 10(2): 439--443.
[16]} Chien J T, Wu C C. Discriminant waveletfaces and nearest feature classifiers for face recognition. {\it IEEE Trans. Pattern Anal. Machine Intell}., 2002, 24(12): 1644--1649.
[17]} Li S Z. Content-based audio classification and retrieval using the nearest feature line method. {\it IEEE Trans. Speech Audio Process}., 2000, 8(5): 619--625.
[18]} Li S Z, Chan K L, Wang C L. Performance evaluation of the nearest feature line method in image classification and retrieval. {\it IEEE Trans. Pattern Anal. Machine Intell}., 2000, 22(11): 1335--1339.
[19]} Chen K, Wu T Y, Zhang H J. On the use of nearest feature line for speaker identification. {\it Pattern Recognition Lett}., 2002, 23(14): 1735--1746.
[20]} Chen J H, Chen C S. Object recognition based on image sequences by using inter-feature-line consistencies. {\it Pattern Recognition}, 2004, 37(9): 1913--1923.
[21]} Zheng W, Zhao L, Zou C. Locally nearest neighbor classifiers for pattern classification. {\it Pattern Recognition}. 2004, 37(6): 1307--1309.
[22]} Zhou Y, Zhang C, Wang J. Tunable nearest neighbour classifier. {\it Lect. Notes Comput. Sci}., 2004, 3175: 204--211.
[23]} Gao Q B, Wang Z Z. Center-based nearest neighbour classifier. {\it Pattern Recognition}, 2007, 40(1): 346--349.
[24]} Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum, 1981.
[25]} Lumini A, Nanni L. A clustering method for automatic biometric template selection. {\it Pattern Recognition}, 2006, 39(3): 495--497.
[26]} Eads D, Hill D, Davisa S, Perkinsa S, Maa J, Portera R, Theiler J. Genetic algorithms and support vector machines for time series classification. In {\it Proc. Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation V}, Seattle, USA, December 2002, pp.74--85.
[27]} Briles S, Moore K, Jones R, Blain P, Klinger P, Neagley D, Carey M, Henneke K, Spurgen W. Innovative use of DSP technology in space: FORTE event classifier. In {\it Proc. the International Workshop on Artificial Intelligence in Solar-Terrestrial Physics}, Dallas, USA, 1993.
[28]} Moore K, Blain P C, Briles S D, Jones R G. Classification of RF transients in space using digital signal processing and neural network techniques. In {\it Proc. SPIE}, 2492, Orlando, USA, 1997.
[29]} Wang J, Neskovic P, Cooper L N. Improving nearest neighbor rule with a simple adaptive distance measure. {\it Pattern Recognition Letters}, 2007, 28(2): 207--213.
[30]} R\"ognvaldsson T, You L. Why neural networks should not be used for HIV-1 protease cleavage site prediction. {\it Bioinformatics}, 2004, 20(11): 1702--1709.
[31]} Hua S, Sun Z. Support vector machine approach for protein subcellular localization prediction. {\it Bioinformatics}, 2001, 17(8): 721--728.
[32]} Demsar J. Statistical comparisons of classifiers over multiple data sets. {\it Journal of Machine Learning Research}, 2006, 7: 1--30.
[33]} Kuncheva L. Combining Pattern Classifiers. John Wiley \& Sons, 2004.
[1] Lan Huang, Da-Lin Li, Kang-Ping Wang, Teng Gao, Adriano Tavares. A Survey on Performance Optimization of High-Level Synthesis Tools [J]. Journal of Computer Science and Technology, 2020, 35(3): 697-720.
[2] Da Wang, Yu Hu, Hua-Wei Li, and Xiao-Wei Li. Design-for-Testability Features and Test Implementation of a Giga Hertz General Purpose Microprocessor [J]. , 2008, 23(6 ): 1037-1046 .
[3] Heng Hu, Hong-Xi Xue, and Ji-Nian Bian. HSM2: A New Heuristic State Minimization Algorithm for Finite State Machine [J]. , 2004, 19(5): 0-0.
[4] Shen Zhaoxuan and Jong Ching Chuen. Lower Bound Estimation of Hardware Resources for Scheduling in High-Level Synthesis [J]. , 2002, 17(6): 0-0.
[5] LI Xiaowei; Paul Y.S. Cheung;. Exploiting Deterministic TPG for Path Delay Testing [J]. , 2000, 15(5): 472-479.
[6] LI Xiaowei; Paul Y.S. Cheung;. High Level Synthesis for Loop-Based BIST [J]. , 2000, 15(4): 338-345.
[7] LI Xiaowei(李晓维)and Paul Y.S.Cheung(张英相). High Level Synthesis for Loop-Based BIST [J]. , 2000, 15(4): 0-0.
[8] Yan Zongfu; Liu Mingye;. The RTL Binding and Mapping Approach of VHDL High-Level Synthesis System HLS/BIT [J]. , 1996, 11(6): 562-569.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!

ISSN 1000-9000(Print)

         1860-4749(Online)
CN 11-2296/TP

Home
Editorial Board
Author Guidelines
Subscription
Journal of Computer Science and Technology
Institute of Computing Technology, Chinese Academy of Sciences
P.O. Box 2704, Beijing 100190 P.R. China
Tel.:86-10-62610746
E-mail: jcst@ict.ac.cn
 
  Copyright ©2015 JCST, All Rights Reserved