[1] Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. 1st Edition, Addison Wesley, May 1999.
[2] Kacholia V, Pandit S, Chakrabarti S, Sudarshan S, Desai R, Karambelkar H. Bidirectional expansion for keyword search on graph databases. In Proc. VLDB2005, Trondheim, Norway, Aug. 30-Sept. 2, 2005, pp.505-516.
[3] Ding B, Yu J X,Wang S, Qin L, Zhang X, Lin X. Finding topk min-cost connected trees in databases. In Proc. ICDE 2007, Istanbul, Turkey, April 15-20, 2007, pp.836-845.
[4] Ananthakrishna R, Chaudhuri S, Ganti V. Eliminating fuzzy duplicates in data warehouses. In Proc. VLDB2002, Hong Kong, China, Aug. 20-23, 2002, pp.586-597.
[5] Li W S, Candan K S, Vu Q, Agrawal D. Retrieving and organizing web pages by \information unit". In Proc. WWW2001, Hong Kong, China, May 1-5, 2001, pp.230-244.
[6] Luo Y, Lin X,Wang W, Zhou X. Spark: Top-k keyword query in relational databases. In Proc. SIGMOD2007, Beijing, China, June 11-14, 2007, pp.115-126.
[7] He H, Wang H, Yang J, Yu P S. Blinks: Ranked keyword searches on graphs. In Proc. SIGMOD2007, Beijing, China, June 11-14, 2007, pp.305-316.
[8] Soliman M A, Ilyas I F, Chang K C C. Top-k query processing in uncertain databases. In Proc. ICDE 2007, Istanbul, Turkey, April 15-20, 2007, pp.896-905.
[9] Yi K, Li F, Kollios G, Srivastava D. Efficient processing of top-k queries in uncertain databases with x-Relations. IEEE Trans. Knowl. Data Eng., 2008, 20(12): 1669-1682.
[10] Hua M, Pei J, Zhang W, Lin X. Ranking queries on uncertain data: A probabilistic threshold approach. In Proc. SIGMOD2008, Vancouver, Canada, June 9-12, 2008, pp.673-686.
[11] Agrawal P, Benjelloun O, Sarma A D, Hayworth C, Nabar S U, Sugihara T, Widom J. Trio: A system for data, uncertainty, and lineage. In Proc. VLDB2006, Seoul, Korea, Sept. 12-15, 2006, pp.1151-1154.
[12] Jin C, Yi K, Chen L, Yu J X, Lin X. Sliding-window top-k queries on uncertain streams. In Proc. VLDB2008, Auckland, New Zealand, Aug. 23-28, 2008, pp.301-312.
[13] Cormode G, Li F, Yi K. Semantics of ranking queries for probabilistic data and expected ranks. In Proc. ICDE 2009, Shanghai, China, March 29-April 2, 2009, pp.305-306.
[14] Li J, Deshpande A. Consensus answers for queries over probabilistic databases. In Proc. PODS2009, Providence, USA, June 29-July 1, 2009, pp.259-268.
[15] Qin L, Yu J X, Chang L, Tao Y. Querying communities in relational databases. In Proc. ICDE 2009, Shanghai, China, Mar. 29-Apr. 2, 2009, pp.724-735.
[16] Re C, Dalvi N N, Suciu D. Efficient top-k query evaluation on probabilistic data. In Proc. ICDE 2007, Istanbul, Turkey, April 15-20, 2007, pp.886-895.
[17] JÄarvelin K, KekÄalÄainen J. IR evaluation methods for retrieving highly relevant documents. In Proc. SIGIR 2000, Athens, Greece, July 24-28, 2000, pp.41-48.
[18] Burges C J C, Shaked T, Renshaw E, Lazier A, Deeds M, Hamilton N, Hullender G N. Learning to rank using gradient descent. In Proc. ICML 2005, Bonn, Germany, Aug. 7-11, 2005, pp.89-96.
[19] Geng X, Liu T Y, Qin T, Arnold A, Li H, Shum H Y. Query dependent ranking using k-nearest neighbor. In Proc. SIGIR 2008, Singapore, July 20-24, 2008, pp.115-122.
[20] Dou Z, Song R, Yuan X,Wen J R. Are click-through data adequate for learning web search rankings? In Proc. CIKM2008, Napa Valley, USA, Oct. 26-30, 2008, pp.73-82.
[21] Chaudhuri S, Ganjam K, Ganti V, Motwani R. Robust and efficient fuzzy match for online data cleaning. In Proc. SIGMOD2003, San Diego, USA, June 9-12, 2003, pp.313-324.
[22] Hernandez M A, Stolfo S J. The merge/purge problem for large databases. In Proc. SIGMOD1995, San Jose, USA, May 22-25, 1995, pp.127-138.
[23] Cohen W W, Ravikumar P, Fienberg S E. A comparison of string distance metrics for name-matching tasks. In Proc. IIWeb 2003, Acapulco, Mexico, Aug. 9-10, 2003, pp.73-78.
[24] Ukkonen E. On approximate string matching. In Proc. FCT, Borgholm, Sweden, Aug. 21-27, 1983, pp.487-495.
[25] Gravano L, Ipeirotis P G, Jagadish H V, Koudas N, Muthukrishnan S, Srivastava D. Approximate string joins in a database (almost) for free. In Proc. VLDB2001, Rome, Italy, Sept. 1114, 2001, pp.491-500.
[26] Bayardo R J, Ma Y, Srikant R. Scaling up all pairs similarity search. In Proc. WWW2007, Banff, Canada, May 8-12, 2007, pp.131-140.
[27] Xiao C, Wang W, Lin X, Yu J X. Efficient similarity joins for near duplicate detection. In Proc. WWW2008, Beijing, China, Apr. 21-25, 2008, pp.131-140.
[28] Bhalotia G, Hulgeri A, Nakhe C, Chakrabarti S, Sudarshan S. Keyword searching and browsing in databases using banks. In Proc. ICDE 2002, San Jose, USA, Feb. 26-Mar. 1, 2002, pp.431-440.
[29] Hristidis V, Papakonstantinou Y. Discover: Keyword search in relational databases. In Proc. VLDB2002, Hong Kong, China, Aug. 20-23, 2002, pp.670-681.
[30] Hristidis V, Gravano L, Papakonstantinou Y. Efficient IRstyle keyword search over relational databases. In Proc. VLDB2003, Berlin, Germany, Sept. 9-12, 2003, pp.850-861.
[31] Agrawal S, Chaudhuri S, Das G. Dbxplorer: A system for keyword-based search over relational databases. In Proc. ICDE 2002, San Jose, USA, Feb. 26-Mar. 1, 2002, p.5.
[32] Liu F, Yu C T, Meng W, Chowdhury A. Effective keyword search in relational databases. In Proc. SIGMOD2006, Chicago, USA, June 27-29, 2006, pp.563-574.
[33] Golenberg K, Kimelfeld B, Sagiv Y. Keyword proximity search in complex data graphs. In Proc. SIGMOD2008, Vancouver, Canada, 2008, pp.927-940.
[34] Li G, Ooi B C, Feng J, Wang J, Zhou L. Ease: An effective 3in-1 keyword search method for unstructured, semi-structured and structured data. In Proc. SIGMOD2008, Vancouver, Canada, June 9-12, 2008, pp.903-914.
[35] Sayyadian M, LeKhac H, Doan A, Gravano L. Efficient keyword search across heterogeneous relational databases. In Proc. ICDE 2007, Istanbul, Turkey, April 15-20, 2007, pp.346-355.
[36] Sarma A D, Benjelloun O, Halevy A Y, Widom J. Working models for uncertain data. In Proc. ICDE 2006, Atlanta, USA, April 3-8, 2006, p.7.
[37] Benjelloun O, Sarma A D, Halevy A Y, Widom J. Uldbs: Databases with uncertainty and lineage. In Proc. VLDB2006, Seoul, Korea, Sept. 12-15, 2006, pp.953-964.
[38] Dalvi N N, Suciu D. Management of probabilistic data: Foundations and challenges. In Proc. PODS2007, Beijing, China, June 11-13, 2007, pp.1-12.
[39] Dalvi N N, Suciu D. Efficient query evaluation on probabilistic databases. VLDB J., 2007, 16(4): 523-544.
[40] Ljosa V, Singh A K. Top-k spatial joins of probabilistic objects. In Proc. ICDE 2008, Cancun, Mexico, Apr. 7-12, 2008, pp.566-575.
|