[1] Fortunato S. Community detection in graphs. Physics Reports, 2010, 486: 75-174.[2] Danon L, Duch L, Guilera A D, Arenas A. Comparing community structure identification. J. Stat. Mech, 2005, 9: P09008.[3] Lancichinetti A, Fortunato S. Community detection algorithms: A comparative analysis. Phys. Rev. E, 2009, 80(5): 056117.[4] Leskovec J, Lang K J, Mahoney M W. Empirical comparison of algorithms for network community detection. In Proc. the 19th International Conference on World Wide Web, Raleigh, USA, Apr. 26-30, 2010, pp.631-640.[5] Shen H, Cheng X. Spectral methods for the detection of network community structure: A comparative analysis. J. Stat. Mech., 2010, 10: P10020.[6] Guimerà R, Pardo M S, Amaral L A N. Module identification in bipartite and directed networks. Phys. Rev. E, 2007, 76(3): 036102.[7] Zlati? V, Ghoshal G, Caldarelli G. Hypergraph topological quantities for tagged social networks. Phys. Rev. E, 2009, 80(3): 036118.[8] Neubauer N, Obermayer K. Towards community detection in k-partite k-uniform hypergraphs. In Workshop on Analyzing Networks and Learning with Graphs, Whistler, BC, Canada, Dec. 11, 2009.[9] Lu C, Chen X, Park E K. Exploit the tripartite network of social tagging for web clustering. In Proc. the 18th ACM Conference on Information and Knowledge Management, Hong Kong, China, Nov. 2-6, 2009, pp.1545-1548.[10] Zhou T, Ren J, Medo M, Zhang Y C. Bipartite network projection and personal recommendation. Phys. Rev. E, 2007, 76(4): 046115.[11] Barber M J. Modularity and community detection in bipartite network. Phys. Rev. E, 2007, 76(6): 066102.[12] Murata T, Ikeya T. A new modularity for detecting one-tomany correspondence of communities in bipartite networks. Advances in Complex Systems, 2010, 13(1): 19-31.[13] Suzuki K,Wakita K. Extracting multi-facet community structure from bipartite networks. In Proc. International Conference on Computational Science and Engineering, Vancouver, BC, Canada, Aug. 29-31, 2009, pp.312-319.[14] Murata T. Detecting communities from tripartite networks. In Proc. the 19th International Conference on World Wide Web, Raleigh, USA, Apr. 26-30, 2010, pp.1159-1160.[15] Murata T. Modularity for heterogeneous networks. In Proc. the 21st ACM Conference on Hypertext and Hypermedia, Toronto, Canada, Jun. 13-16, 2010, pp.129-134.[16] Lin Y R, Sun J, Castro P, Konuru R, Sundaram H, Kelliher A. Metafac: Community discovery via relational hypergraph factorization. In Proc. the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, Jun. 28-Jul. 1, 2009, pp.527-535.[17] Dhillon I S, Mallela S, Modha D S. Information-theoretic coclustering. In Proc. the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,Washington DC, USA, Aug. 24-27, 2003, pp.89-98.[18] Li T. A general model for clustering binary data. In Proc. the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, USA, Aug. 21-24, 2005, pp.188-197.[19] Banerjee A, Dhillon I, Ghosh J, Merugu S, Modha D S. A generalized maximum entropy approach to Bregman co-clustering and matrix approximation. Journal of Machine Learning Research, 2007, 8: 1919-1986.[20] Long B, Zhang Z, Yu P S. A probabilistic framework for relational clustering. In Proc. the 13th ACM International Conference on Knowledge Discovery and Data Mining, San Jose, USA, Aug. 12-15, 2007, pp.470-479.[21] Newman M E J. Networks: An Introduction. New York: Oxford University Press, 2010.[22] Rosvall M, Bergstrom C T. An information-theoretic framework for resolving community structure in complex networks. Proc. Natl. Acad. Sci. USA, 2007, 104(18): 7327-7331.[23] Kernighan B, Lin S. An efficient heuristic procedure to partition graphs. Bell Syst. Tech. J., 1970, 49(2): 291-307.[24] Scott J. Social Network Analysis: A Handbook. Second Edition, Sage Publications, Newberry Park, CA, 2000.[25] Newman M E J, Girvan M. Finding and evaluating community structure in networks. Phys. Rev. E, 2004, 69(2): 026113.[26] Newman M E J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA, 2006, 103(23): 8577- 8582.[27] Fortunato S, Barthélemy M. Resolution limit in community detection. Proc. Natl. Acad. Sci. USA, 2007, 104(1): 36-41.[28] Shen H, Cheng X, Fang B. Covariance, correlation matrix, and the multiscale community structure of networks. Phys. Rev. E, 2010, 82(1): 016114.[29] Newman M E J. Fast algorithm for detecting community structure in networks. Phys. Rev. E, 2004, 69(6): 066133.[30] Clauset A, Newman M E J, Moore C. Finding community structure in very large networks. Phys. Rev. E, 2004, 70(6): 066111.[31] Duch L, Arenas A. Community detection in complex networks using extremal optimization. Phys. Rev. E, 2005, 72(2): 027104.[32] Medus A, Acuna G, Dorso C O. Detection of community structures in networks via global optimization. Physica A, 2005, 358(2-4): 593-604.[33] Newman M E J. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E, 2006, 74(3): 036104.[34] Schuetz P, Caflisch A. Efficient modularity optimization by multistep greedy algorithm and vertex refinement. Phys. Rev. E, 2008, 77(4): 046112.[35] Blondel V D, Guillaume J L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J. Stat. Mech., 2008, 10: P10008.[36] Zhang X S, Wang R S, Wang Y, Wang J, Qiu Y, Wang L, Chen L. Modularity optimization in community detection of complex networks. Europhys. Lett., 2009, 87(3): 38002.[37] Liu X, Murata T. Advanced modularity-specialized label propagation algorithm for detecting communities in networks. Physica A, 2010, 389(7): 1493-1500.[38] Gao B, Liu T Y, Zheng X, Cheng Q S, Ma W Y. Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering. In Proc. the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, USA, Aug. 21-24, 2005, pp.41-50.[39] Greco G, Guzzo A, Pontieri L. An information-theoretic framework for high-order co-clustering of heterogeneous objects. In Proc. the 15th Italian Symposium on Advanced Database Systems, Torre Canne, Italy, Jun. 17-20, 2007, pp.397-404.[40] Long B, Zhang Z F, Wu X Y, Yu P S. Spectral clustering for multi-type relational data. In Proc. the 23rd International Conference on Machine Learning, Pittsburgh, USA, Jun. 25- 29, 2006, pp.585-592.[41] Long B, Wu X, Zhang Z, Yu P S. Unsupervised learning on k-partite graphs. In Proc. the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, USA, Aug. 20-23, 2006, pp.317-326.[42] Singh A P, Gordon G J. Relational learning via collective matrix factorization. In Proc. the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.650—658, Las Vegas, USA, Aug. 24-27, 2008.[43] Singh A P, Gordon G J. A unified view of matrix factorization models. In Proc. the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Antwerp, Belgium, Sept. 15-19, 2008, pp.358-373.[44] Cattuto C, Schmitz C, Baldassarri A, Servedio V D P, Loreto V, Hotho A, Grahl M, Stumme G. Network properties of folksonomies. AI Communications, 2007, 20(4): 245-262.[45] Halpin H, Robu V, Shepherd H. The complex dynamics of collaborative tagging. In Proc. the 16th International Conference on World Wide Web, Banff, Canada, May 8-12, 2007, pp.211-220.[46] Long B, Wu X, Zhang Z, Yu P S. Community learning by graph approximation. In Proc. the 7th IEEE International Conference on Data Mining, Omaha, USA, Oct. 28-31, 2007, pp.232-241.[47] Long B, Zhang Z, Yu P S, Xu T. Clustering on complex graphs. In Proc. the 23rd National Conference on Artificial Intelligence, Chicago, USA, Jul. 13-17, 2008, pp.659-664.[48] Rissanen J. Modelling by shortest data description. Automatica, 1978, 14(5): 465-471.[49] Brandes U, Delling D, Gaertler M, GÄorke R, Hoefer M, Nikolski Z, Wagner D. On modularity—np-completeness and beyond. Technical Report 2006-19, ITI Wagner, Faculty of Informatics, UniversitÄat Karlsruhe, 2006.[50] Raghavan U N, Albert R, Kumara S. Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E, 2007, 76(3): 036106.[51] Barber M J, Clark J W. Detecting network communities by propagating labels under constraints. Phys. Rev. E, 2009, 80(2): 026129.[52] Arenas A, Duch J, Fernández A, Gómez S. Size reduction of complex networks preserving modularity. New Journal of Physics, 2007, 9: 176.[53] Davis A, Gardner B B, Gardner M R. Deep South. Chicago: University of Chicago Press, IL, 1941.[54] Breiger R, Carley K, Pattison P (eds.) Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers, Washington, DC: The National Academics Press, USA, 2003.[55] Jaccard P. Étude comparative de la distribution florale dans une portion des alpes et des jura. Bull. Soc. Vaudoise Sci. Nat., 1901, 37: 547-579.[56] LÄu L, Zhou T. Link prediction in complex networks: A survey. Physica A, 2011, 390: 1150-1170. |