[1] Mamou J, Ramabhadran B, Siohan O. Vocabulary indepen-dent spoken term detection. In Proc. the 30th ACM-SIGIR,Amsterdam, the Netherlands, July 23-27, 2007, pp.615-622.[2] Mamou J, Ramabhadran B. Phonetic query expansionfor spoken document retrieval. In Proc. the 9th IN-TERSPEECH, Brisbane, Australia, September 22-26, 2008,pp.2106-2109.[3] Can D, Cooper E, Sethy A, White C, Ramabhadran B,Saraclar M. Effect of pronunciations on OOV queries in spo-ken term detection. In Proc. ICASSP 2009, Taipei, China,April 19-24, 2009, pp.3957-3960.[4] Fiscus J G, Ajot J, Garofolo J S, Doddingtion G. Resultsof the 2006 spoken term detection evaluation. In Proc.Workshop on Searching Spontaneous Conversational Speech(SIGIR-SSCS), Amsterdam, the Netherlands, July 2007,pp.45-50.[5] Vergyri D, Stolcke A, Gadde R R, Wang W. The SRI 2006spoken term detection system. In Proc. NIST Spoken TermDetection Workshop (STD 2006), Gaithersburg, USA, De-cember 14-15, 2006.[6] Vergyri D, Shafran I, Stolcke A, Gadde R R, Akbacak M,Roark B, Wang W. The SRI/OGI 2006 spoken term detec-tion system. In Proc. the 8th INTERSPEECH, Antwerp,Belgium, August 27-31, 2007, pp.2393-2396.[7] Akbacak M, Vergyri D, Stolcke A. Open-vocabulary spokenterm detection using graphone-based hybrid recognition sys-tems. In Proc. ICASSP 2008, Las Vegas, USA, March 31-April 4, 2008, pp.5240-5243.[8] Szöke I, Fapso M, Karafiát M, Burget L, Grézl F, SchwarzP, Glembek O, Matejka P, Kopecky J, Cernocky J. Spo-ken term detection system based on combination of LVCSRand phonetic search. In Lecture Notes in Computer Science4892, Popescn-Belis A, Bourlard H, Reanals S (eds.), SpringerBerlin/Heidelberg, September 2008, pp.237-247.[9] Szöke I, Burget L, Cernocky J, Fapso M. Sub-word modelingof out of vocabulary words in spoken term detection. In Proc.IEEE Workshop on Spoken Language Technology (SLT2008),Goa, India, December 15-19, 2008, pp.273-276.[10] Szöke I, Fapso M, Burget L, Cernocky J. Hybrid word-subword decoding for spoken term detection. In Proc. SpeechSearch Workshop at SIGIR (SSCS 2008), Singapore, Singa-pore, July 20-24, 2008, pp.42-48.[11] Meng S, Yu P, Liu J, Seide F. Fusing multiple systems intoa compact lattice index for Chinese spoken term detection.In Proc. ICASSP 2008, Las Vegas, USA, March 31-April 4,2008, pp.4345-4348.[12] Thambiratmann K, Sridharan S. Rapid yet accurate speechindexing using dynamic match lattice spotting. IEEE Trans-actions on Audio, Speech, and Language Processing, 2007,15(1): 346-357.[13] Wallace R, Vogt R, Baker B, Sridharan S. Optimising fig-ure of merit for phonetic spoken term detection. In Proc.ICASSP 2010, Dallas, USA, March 14-19, 2010, pp.5298-5301.[14] Parada C, Sethy A, Dredze M, Jelinek F. A spoken term de-tection framework for recovering out-of-vocabulary words us-ing the web. In Proc. Interspeech 2010, Makuhari, Japan,September 26-30, 2010, pp.1269-1272.[15] Jansen A, Church K, Hermansky H. Towards spoken termdiscovery at scale with zero resources. In Proc. INTER-SPEECH 2010, Makuhari, Japan, September 26-30, 2010,pp.1676-1679.[16] Parada C, Sethy A, Ramabhadran B. Balancing false alarmsand hits in spoken term detection. In Proc. ICASSP 2010,Dallas, USA, March 14-19, 2010, pp.5286-5289.[17] Schneider D, Mertens T, Larson M, Kohler J. Contextual veri-fication for open vocabulary spoken term detection. In Proc.INTERSPEECH 2010, Makuhari, Japan, September 26-30,2010, pp.697-700.[18] Chan C A, Lee L S. Unsupervised spoken-term detection withspoken queries using segment-based dynamic time warping.In Proc. INTERSPEECH 2010, Makuhari, Japan, Septem-ber 26-30, 2010, pp.693-696.[19] Chen C P, Lee H Y, Yeh C F, Lee L S. Improved spokenterm detection by feature space pseudo-relevance feedback. In Proc. INTERSPEECH 2010, Makuhari, Japan, Septem-ber 26-30, 2010, pp.1672-1675.[20] Motlicek P, Valente F, Garner P. English spoken termdetection in multilingual recordings. In Proc. INTER-SPEECH 2010, Makuhari, Japan, September 26-30, 2010,pp.206-209.[21] Szöke I, Fapso M, Karafiát M, Burget L, Grézl F, Schwarz P,Glembek O, Matejka P, Kontár S, Cernocky J. BUT systemfor NIST STD 2006 | English. In Proc. NIST Spoken TermDetection Evaluation Workshop (STD 2006), Gaithersburg,USA, December 14-15, 2006.[22] Miller D R H, Kleber M, Kao C L, Kimball O, Colthurst T,Lowe S A, Schwartz R M, Gish H. Rapid and accurate spokenterm detection. In Proc. INTERSPEECH 2007, Antwerp,Belgium, August 27-31, 2007, pp.314-317.[23] Seide F, Yu P, Ma C, Chang E. Vocabulary-independentsearch in spontaneous speech. In Proc. ICASSP 2004, Vol.1,Montreal, Quebec, Canada, May 17-21, 2004, pp.253-256.[24] Logan B, Thong J M V, Moreno P J. Approaches to reducethe effects of OOV queries on indexed spoken audio. IEEETransaction on Multimedia, 2005, 7(5): 899-906.[25] Logan B, Moreno P, Deshmuk O. Word and sub-word index-ing approaches for reducing the effects of OOV queries onspoken audio. In Proc. the 2rd HLT, San Diego, USA, March24-27, 2002, pp.31-35.[26] Ma B, Li H. A phonotactic-semantic paradigm for automaticspoken document classification. In Proc. the 28th Interna-tional ACM SIGIR Conference on Research and Develop-ment in Information retrieval, Salvador, Brazil, August 15-19, 2005, pp.369-376.[27] Pinto J, Szöke I, Prasanna S, Hermansky H. Fast approximatespoken term detection from sequence of phonemes. In Proc.the 31st Annual International ACM SIGIR Conference, Sin-gapore, Singapore, July 20-24, 2008, pp.28-33.[28] Meng S, Yu P, Seide F, Liu J. A study of lattice-based spo-ken term detection for Chinese spontaneous speech. In Proc.ASRU2007, Kyoto, Japan, December 9-13, 2007, pp.635-640.[29] Wang D, Frankel J, Tejedor J, King S. A comparison ofphone and grapheme-based spoken term detection. In Proc.ICASSP 2008, Las Vegas, USA, March 31-April 4, 2008,pp.4969-4972.[30] Wallace R, Vogt R, Sridharan S. A phonetic search approachto the 2006 NIST spoken term detection evaluation. InProc. IINTERSPEECH 2007, Antwerp, Belgium, August 27-31, 2007, pp.2385-2388.[31] Parlak S, Sara~clar M. Spoken term detection for Turkishbroadcast news. In Proc. ICASSP 2008, Las Vegas, USA,March 31-April 4, 2008, pp.5244-5247.[32] James D A. A system for unrestricted topic retrieval from ra-dio news broadcasts. In Proc. ICASSP 1996, Vol.1, Atlanta,USA, May 7-10, 1994, pp.279-282.[33] Jones G J F, Foote J T, Sp?arck Jones K S, Young S J. Retriev-ing spoken documents by combining multiple index sources.In Proc. the 19th ACM SIGIR, Zurich, Switzerland, August18-22, 1996, pp.30-38.[34] Saraclar M, Sproat R. Lattice-based search for spoken utte-rance retrieval. In Proc. HLT-NAACL 2004, Boston, USA,May 2-7, 2004, pp.129-136.[35] Iwata K, Shinoda K, Furui S. Robust spoken term detectionusing combination of phone-based and word-based recogni-tion. In Proc. INTERSPEECH 2008, Brisbane, Australia,September 22-26, 2008, pp.2195-2198.[36] Yu P, Seide F. A hybrid word/phoneme-based approachfor improved vocabulary-independent search in spontaneousspeech. In Proc. ICSLP 2004, Jeju, Korea, October 4-8, 2004,pp.293-296.[37] Yazgan A, Saraclar M. Hybrid language models for out ofvocabulary word detection in large vocabulary conversationalspeech recognition. In Proc. ICASSP 2004, Vol.1, Montreal,Canada, May 17-21, 2004, pp.745-748.[38] NIST. The spoken term detection (STD) 2006 evaluationplan. National Institute of Standards and Technology(NIST), Gaithersburg, USA, 10 edition, September 2006,http://www.nist.gov/speech/tests/std.[39] Martin A, Doddington G, Kamm T, Ordowski M, PrzybockiM. The DET curve in assessment of detection task perfor-mance. In Proc. Eurospeech1997, Vol.4, Rhodes, Greece,September 22-25, 1997, pp.1895-1898.[40] Wessel F, Macherey K, Schl?uter R. Using word probabilitiesas confidence measures. In Proc. ICASSP 1998, Vol.1, Seat-tle, Washington, USA, May 12-15, 1998, pp.225-228.[41] Rohlicek J R, Russell W, Roukos S, Gish H. Continuoushidden Markov modeling for speaker-independent word spot-ting. In Proc. ICASSP 1989, Glasgow, UK, May 23-26, 1989,pp.627-630.[42] Cox S, Rose R. Confidence measures for the SWITCHBOARDdatabase. In Proc. ICASSP 1996, Vol.1, Atlanta, USA, May7-10, 1996, pp.511-514.[43] Weintraub M. LVCSR log-likelihood ratio scoring for keywordspotting. In Proc. ICASSP 1995, Vol.1, Detroit, USA, May9-12, 1995, pp.297-300.[44] Setlur A R, Sukkar R A, Jacob J. Correcting recognition er-rors via discriminative utterance verification. In Proc. IC-SLP 1996, Philadelphia, USA, October 1996, pp.602-605.[45] James D A, Young S J. A fast lattice-based approach to vo-cabulary independent wordspotting. In Proc. ICASSP 1994,Vol.1, Adelaide, Australia, April 19-22, 1994, pp.377-380.[46] Kemp T, Schaaf T. Estimating confidence using word lattices.In Proc. EUROSPEECH1997, Rhodes, Greece, September22-25, 1997, pp.827-830.[47] Rahim M G, Lee C H, Juang B H. Discriminative utteranceverification for connected digits recognition. IEEE Transac-tions on Speech and Audio Processing, 1997, 5(3): 266-277.[48] Sukkar R A. Subword-based minimum verification error (SB-MVE) training for task independent utterance verification. InProc. ICASSP 1998, Vol.1, Seattle, USA, May 12-15, 1998,pp.229-232[49] Gillick L, Ito Y, Young J. A probabilistic approach to con-fidence estimation and evaluation. In Proc. ICASSP 1997,Munich, Germany, April 21-24, 1997, pp.879-882.[50] Siu M, Gish H, Richardson F. Improved estimation, eval-uation and applications of confidence measures for speechrecognition. In Proc. EUROSPEECH1997, Rhodes, Greece,September 22-25, 1997, pp.831-834.[51] Chase L. Word and acoustic confidence annotation for largevocabulary speech recognition. In Proc. EUROSPEECH1997, Rhodes, Greece, September 22-25, 1997, pp.815-818.[52] Hauptmann A G, Jones R E, Seymore K, Slattery S T, Wit-brock M J, Siegler M A. Experiments in information re-trieval from spoken documents. In Proc. DARPA Workshopon Broadcast News Transcription and Understanding, Lans-downe, USA, February 8-11, 1998, pp.175-181.[53] Kamppari S O, Hazen T J. Word and phone level acousticconfidence scoring. In Proc. ICASSP 2000, Vol.3, Istanbul,Turkey, June 5-9, 2000, pp.1799-1802.[54] ábrego G A H. Confidence measures for speech recogni-tion and utterance verification [PhD thesis]. Polytechnic ofCatalu~na, March 2000.[55] Zhang R, Rudnicky A I. Word level confidence annotation us-ing combinations of features. In Proc. EUROSPEECH2001,Aalborg, Denmark, September 3-7, 2001, pp.2105-2108.[56] Sudoh K, Tsukada H, Isozaki H. Discriminative named en-tity recognition of speech data using speech recognition con-fidence. In Proc. ICSLP 2006, Pittsburgh, USA, September17-21, 2006, pp.1153-1156.[57] Shafran Z, Roark B, Fisher S. OGI spoken term detection sys-tem. In Proc. NIST Spoken Term Detection Workshop (STD2006), Gaithersburg, USA, December 14-15, 2006, pp.1-15.[58] Jiang H. Confidence measures for speech recognition: A sur-vey. Speech Communication 2005, 45(4): 455-470.[59] Siu M, Gish H. Evaluation of word confidence for speechrecognition systems. Computer Speech and Language, 1999,13(4): 299-319.[60] Mathan L, Miclet L. Rejection of extraneous input in speechrecognition applications, using multi-layer perceptrons andthe trace of HMMs. In Proc. ICASSP 1991, Vol.1, Toronto,Canada, April 14-17, 1991, pp.93-96.[61] Neti C V, Roukos S, Eide E. Word-based confidence mea-sures as a guide for stack search in speech recognition. InProc. ICASSP 1997, Munich, Germany, April 21-24, 1997,pp.883-886.[62] Bishop C M. Neural Networks for Pattern Recognition. Ox-ford University Press, 1995.[63] Wang D, King S, Frankel J. Stochastic pronunciation model-ing for out-of-vocabulary spoken term detection. IEEE Trans.Audio, Speech, and Language Processing, 2011, 19(4): 688-698.[64] Hain T, Burget L, Dines J, Garau G, Karafiat M, LincolnM, Vepa J, Wan V. The AMI meeting transcription system:Progress and performance. In Lecture Notes in Computer Sci-ence 4299, Renals S et al. (eds.), Springer Berlin/Heidelberg,2006, pp.419-431.[65] Deligne S, Yvon F, Bimbot F. Variable-length sequencematching for phonetic transcription using joint multigrams.In Proc. EUROSPEECH1995, Madrid, Spain, September 18-21, 1995, pp.2243-2246.[66] Chang C C, Lin C J. LIBSVM: A library for support vectormachines. http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.[67] Liaw A, Wiener M. Classification and regression by randomforest. R News, 2002, 2(3): 18-22.[68] Can D, Sara~clar M. Score distribution based term specificthresholding for spoken term detection. In Proc. NAACLHLT 2009, Boulder, USA, May 31-June 5, 2009, pp.269-272. |