[1] Adar E, Adamic L A. Tracking information epidemics inblogspace. In Proc. Int. Conf. Web Intelligence, Wash-ington, DC, USA, Sept. 2005, pp.207-214.[2] Agarwal N, Liu H, Tang L, Yu P S. Identifying the influentialbloggers in a community. In Proc. WSDM 2008, New York,USA, Feb. 2008, pp.207-218.[3] Tan L K W, Na J C, Theng Y L. Influence detection be-tween blog posts through blog features, content analysis, andcommunity identity. Online Information Review, 2011, 35(3):425-442.[4] Abbasi A, Chen H, Salem A. Sentiment analysis in multiplelanguages: Feature selection for opinion classification in Webforums. Trans. Inf. Syst., 2008, 26(3): Article No. 12.[5] Demartini G, Siersdorfer S. Dear search engine: What's youropinion about: Sentiment analysis for semantic enrichmentof web search results. In Proc. SEMSEARCH 2010, NewYork, USA, April 2010, Article No.4.[6] Devitt A, Ahmad K. Sentiment polarity identification in fi-nancial news: A cohesion-based approach. In Proc. ACL2007, Prague, Czech Republic, June 2007, pp.984-991.[7] O'Hare N, Davy M, Bermingham A, Ferguson P, Sheridan P,Gurrin C, Smeaton A F. Topic-dependent sentiment analysisof financial blogs. In Proc. CIKM Workshop on TSA 2009,New York, USA, Nov. 2009, pp.9-16.[8] Ding X, Liu B, Yu P S. A holistic lexicon-based approachto opinion mining. In Proc. WSDM 2008, New York, USA,April 2008, pp.231-240.[9] Morinaga S, Yamanishi K, Tateishi K, Fukushima T. Miningproduct reputations on the Web. In Proc. SIGKDD 2002,New York, USA, July 2002, pp.341-349.[10] Riloff E, Wiebe J. Learning extraction patterns for subjectiveexpressions. In Proc. EMNLP 2003, Stroudsburg, PA, USA,July 2003, pp.105-112.[11] Turney P D. Thumbs up or thumbs down?: Semantic orienta-tion applied to unsupervised classification of reviews. In Proc.ACL 2002, Stroudsburg, PA, USA, July 2002, pp.417-424.[12] Pang B, Lee L. A sentimental education: Sentiment analysisusing subjectivity summarization based on minimum cuts. InProc. ACL 2004, Barcelona, Spain, July 2004, pp.271-278.[13] Thet T T, Na J C, Khoo C S G. Aspect-based sentimentanalysis of movie reviews on discussion boards. Journal ofInformation Science, 2010, 36(6): 823-848.[14] Wilson T, Wiebe J, Hoffmann P. Recognizing contextual po-larity in phrase-level sentiment analysis. In Proc. HLT-EMNLP 2005, Vancouver, British Columbia, Canada, Oct.2005, pp.347-354.[15] Wilson T, Wiebe J, Hwa R. Recognizing strong and weakopinion clauses. Computational Intelligence, 2006, 22(2): 73-99.[16] Nivre J. Dependency grammar and dependency parsing.Technical Report MSI report 05133, V?axjö University, Schoolof Mathematics and Systems Engineering, 2005.[17] Jakob N, Weber S H, Muller M C, Gurevych I. Beyond thestars: Exploiting free-text user reviews to improve the accu-racy of movie recommendations. In Proc. CIKM Workshopon TSA 2009, Hong Kong, China, Nov. 2009, pp.57-64.[18] Shaikh M A M, Prendinger H, Ishizuka M. Sentiment assess-ment of text by analyzing linguistic features and contextualvalence assignment. Appl. Artif. Intell., 2008, 22(6): 558-601.[19] Liu B. Web Data Mining: Exploring Hyperlinks, Contentsand Usage Data (1st edition). Springer Berlin Heidelberg,New York, 2006, pp.37-54.[20] Osman D J, Yearwood J, Vamplew P. Weblogs for market re-search: Finding more relevant opinion documents using sys-tem fusion. Online Information Review, 2009, 33(5): 873-888.[21] Hu M, Liu B. Mining and summarizing customer reviews. InProc. the 10th SIGKDD, Seattle, WA, USA, Aug. 2004,pp.168-177.[22] Kim S M, Hovy E. Determining the sentiment of opinions. InProc. the 20th COLING, Geneva, Switzerland, 2004, pp.1367-1373.[23] Zhang C, Zeng D, Li J, Wang F Y, Zuo W. Sentiment analy-sis of Chinese Documents: From sentence to document level.Journal of the American Society for Information Science andTechnology, 2009, 60(12): 2474-2487.[24] Na J C, Thet T T, Khoo C. Comparing sentiment expressionin movie reviews from four online genres. Online InformationReview, 2010, 34(2): 317-338.[25] Moilanen K, Pulman S. Sentiment composition. In Proc.RANLP 2007, Borovets, Bulgaria, Sept. 2007, pp.378-382.[26] Cohen J. A coefficient of agreement for nominal scales. Edu-cational and Psychological Measurement, 1960, 20(1): 37-46.[27] Joshi M, Penstein-Rose C. Generalizing dependency featuresfor opinion mining. In Proc. ACL-IJCNLP 2009, Suntec,Singapore, Aug. 2009, pp.313-316.[28] Agrawal R, Srikant R. Fast algorithms for mining associationrules in large databases. In Proc. VLDB 1994, Santiago deChile, Chile, Sept. 1994, pp.487-499.[29] Wong K W, Zhou S, Yang Q, Yeung J M S. Mining customervalue: From association rules to direct marketing. Data Min-ing and Knowledge Discovery, 2005, 11(1): 57-79.[30] Polanyi L, Zaenen A. Computing attitude and affect in text:Theory and applications. Computing Attitude and Affect inText: Theory and Applications, 2006, 20: 1-10.[31] Quirk R, Greenbaum S, Leech G, Svartvik J. A Comprehen-sive Grammar of the English Language, Longman, 1985.[32] Tan L K W, Na J C, Theng Y L, Chang K Y. Sentence-levelsentiment polarity classification using a linguistic approach.In Proc. ICADL 2011, Beijing, China, Oct. 2011, pp.77-87. |