[1] Balabanovic M, Shoham Y. Fab: Content-based collaborativerecommendation. Comm. ACM, 1997, 40(3): 66-72.[2] Lang K. NewsWeeder: Learning to filter netnews. In Proc.the 12th Int. Conf. Machine Learning, Jul. 1995, pp.331-339.[3] Mooney R J, Roy L. Content-based book recommending usinglearning for text categorization. In Proc. ACM SIGIR 1999Workshop Recommender Systems: Algorithms and Evalua-tion, Aug. 1999, pp.195-204.[4] Pazzani M, Billsus D. Learning and revising user profiles:The identification of interesting web sites. Machine Learn-ing, 1997, 27(3): 313-331.[5] Xue G R, Dai W Y, Yang Q, Yu Y. Topic-bridged PLSA forcross-domain text classification. In Proc. the 31st Conf. Re-search and Development in Information Retrieval, Jul. 2008,pp.627-634.[6] Liu N N, Yang Q. EigenRank: A ranking-oriented approach tocollaborative filtering. In Proc. the 31st Conf. Research andDevelopment in Information Retrieval, Jul. 2008, pp.83-90.[7] Breese J, Heckerman D, Kadie C. Empirical analysis of predic-tive algorithms for collaborative filtering. In Proc. the 14thInt. Conf. Uncertainty in Artificial Intelligence (UAI 1998),May 1998, pp.43-52.[8] Liu N N, Zhao M, Yang Q. Probabilistic latent prefer-ence analysis for collaborative filtering. In Proc. the18th Int. Conf. Information and Knowledge Management(CIKM2009), Nov. 2009, pp.759-766.[9] Xin X, King L, Deng H, Lyu M R. A social recommendationframework based on multi-scale continuous conditional ran-dom fields. In Proc. the 18th ACM Conf. Information andKnowledge Management, Nov. 2009, pp.1247-1256.[10] Adomavicius G, Tuzhilin A. Toward the next generation ofrecommender systems: A survey of the state-of-the-art andpossible extensions. IEEE Trans. Knowledge and Data En-gineering, 2005, 17(6): 734-749.[11] Herlocker J L, Konstan J A, Borchers A, Riedl J. An algo-rithmic framework for performing collaborative filtering. InProc. the 22nd Conf. Research and Development in Infor-mation Retrieval, Aug. 1999, pp.230-237.[12] Jin R, Chai J Y, Si L. An automatic weighting scheme forcollaborative filtering. In Proc. the 27th Conf. Research andDevelopment in Information Retrieval, Jul. 2004, pp.337-344.[13] Zhao Z, Shang M. User-based collaborative-filtering recom-mendation algorithms on Hadoop. In Proc. the 3rd Int.Conf. Knowledge Discovery and Data Mining, Jan. 2010,pp478-481.[14] Deshpande M, Karypis G. Item-based top-N recommenda-tion algorithms. ACM Transactions on Information Systems,2004, 22(1): 143-177.[15] Linden G, Smith B, York J. Amazon.com recommendations:Item-to-item collaborative filtering. IEEE Internet comput-ing, 2003, 7(1): 76-80.[16] Sarwar B, Karypis G, Konstan J, Reidl J. Item-based collabo-rative filtering recommendation algorithms. In Proc. the 10thInt. World Wide Web Conference, May 2001, pp.285-295.[17] Ma H, King I, Lyu M. Effective missing data prediction forcollaborative filtering. In Proc. the 30th Conf. Research andDevelopment in Information Retrieval, Jul. 2007, pp.39-46.[18] Wang J, Vries De A, Reinders M. Unifying user-based anditem-based collaborative filtering approaches by similarity fu-sion. In Proc. the 29th Conf. Research and Development inInformation Retrieval, Aug. 2006, pp.501-508.[19] Zheng Z, Ma H, Lyu M R, King I. WSRec: A collaborativefiltering based Web service recommender system. In Proc.the 7th Int. Conf. Web Services, Jul. 2009, pp.437-444.[20] Zheng Z, Ma H, Lyu M R, King I. QoS-awareWeb service rec-ommendation by collaborative filtering. IEEE Transactionson Service Computing, 2011, 4(2): 140-152.[21] Resnick P, Iacovou N, Sushak M, Bergstrom P, Riedl J. Grou-pLens: An open architecture for collaborative filtering of net-news. In Proc. the 1994 ACM Conf. Computer SupportedCooperative Work, Oct. 1994, pp.175-186.[22] Shardanand U, Maes P. Social information filtering: Algo-rithms for automating "Word of Mouth". In Proc. HumanFactors in Computing Systems, May 1995, pp.210-217.[23] Candillier L, Meyer F, Fessant F. Designing specific weightedsimilarity measures to improve collaborative filtering systems.In Proc. the 12th Industrial Conf. Data Mining, Jul. 2008,pp.242-255.[24] Ahn J H. A new similarity measure for collaborative filteringto alleviate the new user cold-starting problem. InformationSciences, 2008, 178(1): 37-51.[25] Zeng C, Xing C X, Zhou L Z, Zheng X H. Similarity measureand instance selection for collaborative filtering. Int. Journalof Electronic Commerce, 2004, 8(4): 115-129.[26] Fouss F, Pirotte A, Renders J M, Saerens M. Random-walkcomputation of similarities between nodes of a graph withapplication to collaborative recommendation. IEEE Trans.Knowledge and Data Engineering, 2007, 19(3): 355-369.[27] Symeonidis P, Nanopoulos A, Papadopoulos A N, Manolopou-los Y. Collaborative filtering: Fallacies and insights in mea-suring similarity. In Proc. the 10th PKDD Workshop on WebMining, Sept. 2006, pp.56-67.[28] Shi Y, Larson M, Hanjalic A. Exploiting user similarity basedon rated-item pools for improved user-based collaborative fil-tering. In Proc. the 3rd ACM Conf. Recommender Systems,Oct. 2009, pp.125-132.[29] Miller B, Albert I, Lam S, Konstan J, Riedl J. MovieLensunplugged: Experiences with an occasionally connected rec-ommender system. In Proc. the 8th International Conferenceon Intelligent User Interfaces, Jan. 2003, pp.263-266 |