[1] Huang Z, Chung W Y, Chen H C. A graph model for E-commerce recommender systems. J. Am. Soc. Inf. Sci. Technol., 2004, 55(3): 259-274.[2] Brin S, Page L. The anatomy of a large-scale hypertextual web search engine. Comput. Networks and ISDN Systems, 1998, 30: 107-117.[3] Al-Masri E, Mahmoud Q H. Investigating web services on the world wide web. In Proc. the 17th Int. Conf. World Wide Web, April 2008, pp.795-804.[4] Jeong B, Lee J, Cho H. Improving memory-based collaborative filtering via similarity updating and prediction modulation. Inf. Sci.: an International Journal, 2010, 180(5): 602-612.[5] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng., 2005, 17(6): 734-749.[6] Sarwar B, Karypis G, Konstan J, Reidl J. Item-based collaborative filtering recommendation algorithms. In Proc. the 10th Int. Conf. World Wide Web, May 2001, pp.285-295.[7] Linden G, Smith B, York J. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Comput., 2003, 7(1): 76-80.[8] Bogers T, van den Bosch A. Fusing recommendations for social bookmarking web sites. Int. J. Electron. Commer., 2011, 15(3): 31-72.[9] Prawesh S, Padmanabhan B. Probabilistic news recommender systems with feedback. In Proc. the 6th ACM Conf. Recomm. Syst., September 2012, pp.257-260.[10] Barragáns-Martínez A B, Costa-Montenegro E, Burguillo J C, Rey-López M, Mikic-Fonte F A, Peleteiro A. A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition. Inf. Sci.: an International Journal, 2010, 180(22): 4290-4311.[11] Cheng J S, Sun A, Hu D N, Zeng D. An information diffusion-based recommendation framework for microblogging. J. Assoc. Inf. Syst., 2011, 12(7): 463–486.[12] Biau G, Cadre B, Rouvière L. Statistical analysis of knearest neighbor collaborative recommendation. Ann. Stat., 2010, 38(3): 1568-1592.[13] Georgiou O, Tsapatsoulis N. The importance of similarity metrics for representative users identification in recommender systems. In Artif. Intell. Appl. Innov., Papadopoulos H, Andreou A S, Bramer M (eds.), Springer Berlin Heidelberg, 2010, pp.12-21.[14] Pérez I, Cabrerizo F, Herrera-Viedma E. Group decision making problems in a linguistic and dynamic context. Expert Syst. Appl., 2011, 38(3): 1675-1688.[15] Burke R. Hybrid recommender systems: Survey and experiments. User Model. User-Adapt. Interact., 2002, 12(4): 331-370.[16] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. Computer, 2009, 42(8): 30-37.[17] Paterek A. Improving regularized singular value decomposition for collaborative filtering. In Proc. the 13th KDD Cup Work., August 2007, pp.39-42.[18] Wang X, Sun J T, Chen Z, Zhai C. Latent semantic analysis for multiple-type interrelated data objects. In Proc. the 29th Annu. Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., August 2006, pp.236-243.[19] Zhou T, Ren J, Medo M, Zhang Y C. Bipartite network projection and personal recommendation. Phys. Rev. E, 2007, 76(4pt2): 046115.[20] Gan, M. COUSIN: A network-based regression model for personalized recommendations. Decision Support Systems, 2016, 82: 58-68.[21] Golder S A, Huberman B A. Usage patterns of collaborative tagging systems. J. Inf. Sci., 2006, 32(2): 198-208.[22] Vig J, Sen S, Riedl J. The tag genome: Encoding community knowledge to support novel interaction. ACM Trans. Interact. Intell. Syst., 2012, 2(3): Article No. 13.[23] Zhang Z K, Zhou T, Zhang Y C. Tag-aware recommender systems: A state-of-the-art survey. J. Comput. Sci. Technol., 2011, 26(5): 767-777.[24] Gan M. TAFFY: Incorporating tag information into a diffusion process for personalized recommendations. World Wide Web—Internet and Web Information Systems, 2015.[25] Hotho A, Robert J, Schmitz C, Stumme G. Information retrieval in folksonomies: Search and ranking. In Proc. the 3rd ESWC, June 2006, pp.411-426.[26] Lambiotte R, Ausloos M. Collaborative tagging as a tripartite network. In Proc. the 6th ICCS, May 2006, pp.1114-1117.[27] Song Y, Zhuang Z, Li H, Zhao Q, Li J, Lee W C et al. Real-time automatic tag recommendation. In Proc. the 31st Annu. Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., July 2008, pp.515-522.[28] Zhou X, Xu Y, Li Y, Josang A, Cox C. The state-of-the-art in personalized recommender systems for social networking. Artif. Intell. Rev., 2011, 37(2): 119-132.[29] Clements M, De Vries A P, Reinders M J T. The taskdependent effect of tags and ratings on social media access. ACM Trans. Inf. Syst., 2010, 28(4): Article No. 21.[30] Zhang Z K, Zhou T, Zhang Y C. Personalized recommendation via integrated diffusion on user-item-tag tripartite graphs. Phys. A: Stat. Mech. Its Appl., 2010, 389(1): 179-186.[31] Kolda T G, Bader B W. Tensor decompositions and applications. SIAM Rev., 2009, 51(3): 455-500.[32] Rendle S, Marinho L B, Nanopoulos A, Schmidt-Thieme L. Learning optimal ranking with tensor factorization for tag recommendation. In Proc. the 15th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., June 28-July 1, 2009, pp.727-736.[33] Symeonidis P, Nanopoulos A, Manolopoulos Y. Tag recommendations based on tensor dimensionality reduction. In Proc. ACM Conf. Recomm. Syst., October 2008, pp.43-50.[34] Symeonidis P, Nanopoulos A, Manolopoulos Y. A unified framework for providing recommendations in social tagging systems based on ternary semantic analysis. IEEE Trans. Knowl. Data Eng., 2010, 22(2): 179-192.[35] Zhang QM, Zeng A, Shang M S. Extracting the information backbone in online system. PLoS One, 2013, 8(5): e62624.[36] Gan M, Jiang R. Improving accuracy and diversity of personalized recommendation through power law adjustments of user similarities. Decis. Support Syst., 2013, 55(3): 811-821.[37] Gan M, Jiang R. Constructing a user similarity network to remove adverse influence of popular objects for personalized recommendation. Expert Syst. Appl., 2013, 40(10): 4044-4053.[38] Gan M, Jiang R. ROUND: Walking on an object-user heterogeneous network for personalized recommendations. Expert Syst. Appl., 2015, 42(22): 8791-8804.[39] Jiang R. Walking on multiple disease-gene networks to prioritize candidate genes. J. Mol. Cell Biol., 2015, 7(3): 214-230.[40] YuW, Lin X. IRWR: Incremental random walk with restart. In Proc. the 36th Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., July 28-August 1, 2013, pp.1017-1020.[41] Chiang M F, Liou J J, Wang J L, Peng W C, Shan M K. Exploring heterogeneous information networks and random walk with restart for academic search. Knowl. Inf. Syst., 2012, 36(1): 59-82.[42] Li J, Xia F, Wang W, Chen Z, Asabere N Y, Jiang H. ACRec: A co-authorship based random walk model for academic collaboration recommendation. In Proc. the 23rd Int. Conf. World Wide Web Companion, April 2014, pp.1209-1214.[43] Gan M. Walking on a user similarity network towards personalized recommendations. PLoS One, 2014, 9(12): e114662.[44] Backstrom L, Leskovec J. Supervised random walks: Predicting and recommending links in social networks. In Proc. the 4th ACM Intl. Conf. Web Search and Data Mining, Feb. 2011, pp.635-644.[45] Shang M S, Zhang Z K, Zhou T, Zhang Y C. Collaborative filtering with diffusion-based similarity on tripartite graphs. Phys. A: Stat. Mech. Its Appl., 2010, 389(6): 1259-1264.[46] Tso-Sutter K H L, Marinho L B, Schmidt-Thieme L. Tagaware recommender systems by fusion of collaborative filtering algorithms. In Proc. the 2008 ACM Symp. Appl. Comput., March 2008, pp.1995-1999.[47] Wetzker R, UmbrathW, Said A. A hybrid approach to item recommendation in folksonomies. In Proc. WSDM 2009 Work. Exploit. Semant. Annot. Inf. Retr., February 2009, pp.25-29.[48] Zlati? V, Ghoshal G, Caldarelli G. Hypergraph topological quantities for tagged social networks. Phys. Rev. E., 2009, 80: 036118.[49] Zhang Z K, Liu C. A hypergraph model of social tagging networks. J. Stat. Mech.: Theory & Exp., 2010, 2010: P10005.[50] Shang M S, Zhang Z K. Diffusion-based recommendation in collaborative tagging systems. Chinese Phys. Lett., 2009, 26(11): 118903.[51] Emamy K, Cameron R. CiteULike: A researcher’s social bookmarking service. Ariadne., 2007, 51(5).[52] Grouplens Research. MovieLens datasets. http://www.grouplens.org/node/73, April 2016.[53] Benz D, Hotho A, Jäschke R, Krause B, Mitzlaff F, Schmitz C et al. The social bookmark and publication management system BibSonomy. VLDB J., 2010, 19(6): 849-875.[54] Zhang M, Tang J, Zhang X, Xue X. Addressing cold start in recommender systems: A semi-supervised co-training algorithm. In Proc. the 37th Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., July 2014, pp.73-82. |