[1] Kariv O, Hakimi S L. An algorithmic approach to network location problems. I:The p-centers. SIAM Journal on Applied Mathematics, 1979, 37(3):513-538.[2] Kariv O, Hakimi S L. An algorithmic approach to network location problems. Ⅱ:The p-medians. SIAM Journal on Applied Mathematics, 1979, 37(3):539-560.[3] Hakimi S L. Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research, 1964, 12(3):450-459.[4] Minieka E. The m-center problem. SIAM Review, 1970, 12(1):138-139.[5] Daskin M S. Network and Discrete Location:Models Algorithms and Applications. John Wiley & Sons, 1995.[6] Daskin M S. A new approach to solving the vertex p-center problem to optimality:Algorithm and computational results. Communications of the Operations Research Society of Japan, 2000, 45(9):428-436.[7] Ilhan T, Pinar M C. An efficient exact algorithm for the vertex p-center problem. http://www.optimizationonline.org/DBHTML/2001/09/376.html, June 2017.[8] Elloumi S, Labbé M, Pochet Y. A new formulation and resolution method for the p-center problem. INFORMS Journal on Computing, 2004, 16(1):84-94.[9] Al-Khedhairi A, Salhi S. Enhancements to two exact algorithms for solving the vertex p-center problem. Journal of Mathematical Modelling and Algorithms, 2005, 4(2):129-147.[10] Hochbaum D S, Shmoys D B. A best possible heuristic for the k-center problem. Mathematics of Operations Research, 1985, 10(2):180-184.[11] Martinich J S. A vertex-closing approach to the p-center problem. Naval Research Logistics, 1988, 35(2):185-201.[12] Plesník J. A heuristic for the p-center problems in graphs. Discrete Applied Mathematics, 1987, 17(3):263-268.[13] Mladenovi? N, Labbé M, Hansen P. Solving the p-center problem with tabu search and variable neighborhood search. Networks, 2003, 42(1):48-64.[14] Hassin R, Levin A, Morad D. Lexicographic local search and the p-center problem. European Journal of Operational Research, 2003, 151(2):265-279.[15] Caruso C, Colorni A, Aloi L. Dominant, an algorithm for the p-center problem. European Journal of Operational Research, 2003, 149(1):53-64.[16] Pacheco J A, Casado S. Solving two location models with few facilities by using a hybrid heuristic:A real health resources case. Computers & Operations Research, 2005, 32(12):3075-3091.[17] Davidovi? T, Ramljak D, Šelmi? M, Teodorovi? D. Bee colony optimization for the p-center problem. Computers & Operations Research, 2011, 38(10):1367-1376.[18] Yurtkuran A, Emel E. A modified artificial bee colony algorithm for p-center problems. The Scientific World Journal, 2014, 2014:824196.[19] Scaparra M P, Pallottino S, Scutellà M G. Large-scale local search heuristics for the capacitated vertex p-center problem. Networks, 2004, 43(4):241-255.[20] Cheng T C E, Kang L Y, Ng C T. An improved algorithm for the p-center problem on interval graphs with unit lengths. Computers & Operations Research, 2007, 34(8):2215-2222.[21] Krumke S O. On a generalization of the p-center problem. Information Processing Letters 1995, 56(2):67-71.[22] Arostegui M A Jr, Kadipasaoglu S N, Khumawala B M. An empirical comparison of tabu search, simulated annealing, and genetic algorithms for facilities location problems. International Journal of Production Economics, 2006, 103(2):742-754.[23] Pullan W. A memetic genetic algorithm for the vertex pcenter problem. Evolutionary Computation, 2008, 16(3):417-436.[24] Laguna M, Marti R. GRASP and path relinking for 2-layer straight line crossing minimization. INFORMS Journal on Computing, 1999, 11(1):44-52.[25] Aiex R M, Resende M G C, Pardalos P M, Toraldo G. GRASP with path relinking for three-index assignment. INFORMS Journal on Computing, 2005, 17(2):224-247.[26] Ribeiro C C, Uchoa E, Werneck R F. A hybrid GRASP with perturbations for the steiner problem in graphs. INFORMS Journal on Computing, 2002, 14(3):228-246.[27] Aiex R M, Binato S, Resende M G C. Parallel GRASP with path-relinking for job shop scheduling. Parallel Computing, 2003, 29(4):393-430.[28] Oliveira C A S, Pardalos P M, Resende M G C. GRASP with path-relinking for the quadratic assignment problem. In Proc. the 3rd Int Workshop on Experimental and Efficient Algorithms, May 2004, pp.356-368.[29] Festa P, Pardalos P M, Resende M G C, Ribeiro C C. Randomized heuristics for the max-cut problem. Optimization Methods and Software, 2002, 17(6):1033-1058.[30] Huang W Q, Lv Z P, Shi H. Growth algorithm for finding low energy configurations of simple lattice proteins. Physical Review E, 2005, 72(1):016704.[31] Zou P, Zhou Z, Wan Y Y, Chen G L, Gu J. New metaheuristic for combinatorial optimization problems:Intersection based scaling. Journal of Computer Science and Technology, 2004, 19(6):740-751.[32] Xu H Y, Lv Z, Cheng T C E. Iterated local search for singlemachine scheduling with sequence-dependent setup times to minimize total weighted tardiness. Journal of Scheduling, 2014, 17(3):271-287.[33] Xu H Y, Lv Z P, Yin A H, Shen L J, Buscher U. A study of hybrid evolutionary algorithms for single machine scheduling problem with sequence-dependent setup times. Computers & Operations Research, 2014, 50:47-60.[34] Glover F. Tabu search-part I. ORSA Journal on Computing, 1989, 1(3):190-206.[35] Huang W Q, Zhang D F, Wang H X. An algorithm based on tabu search for satisfiability problem. Journal of Computer Science and Technology, 2002, 17(3):340-346.[36] Lai X J, Lv Z P. Multistart iterated tabu search for bandwidth coloring problem. Computers & Operations Research, 2013, 40(5):1401-1409.[37] Wu J, Rosin P L, Sun X F, Martin R R. Improving shape from shading with interactive tabu search. Journal of Computer Science and Technology, 2016, 31(3):450-462.[38] Glover F. Tabu search and adaptive memory programming-Advances, applications and challenges. In Interfaces in Computer Science and Operations Research. Operations Research/Computer Science Interfaces Series, Barr R S, Helgason R V, Kennington J L (eds.), Springer 1997, pp.1-75.[39] Glover F. Multi-start and strategic oscillation methods-Principles to exploit adaptive memory. In Computing Tools for Modeling Optimization and Simulation Operations Research/Computer Science Interfaces Series, Laguna M, Velarde J L G (eds.), Springer, 2000 pp.1-23.[40] Glover F, Laguna M, Martí R. Fundamentals of scatter search and path relinking. Control and Cybernetics, 2000, 29(3):653-684.[41] Peng B, Lv Z P, Cheng T C E. A tabu search/path relinking algorithm to solve the job shop scheduling problem. Computers & Operations Research, 2015, 53:154-164.[42] Reinelt G. TSPLIB-A traveling salesman problem library. ORSA Journal on Computing, 1991, 3(4):376-384.[43] Floyd R W. Algorithm 97:Shortest path. Communications of the ACM, 1962, 5(6):Article No. 345.[44] Lourenço H R, Martin O C, Stützle T. Iterated local search. In Handbook of Metaheuristics, Glover F, Kochenberger G A (eds.), Springer, 2003, pp.320-353.[45] Boese K D. Cost versus distance in the traveling salesman problem. Technical report TR-950018 UCLA CS Department, 1995.[46] Stützle T, Dorigo M. ACO algorithms for the quadratic assignment problem. In New Ideas in Optimization, Corne D, Dorigo M, Glover F et al. (eds.), McGraw-Hill Ltd., 1999, pp.33-50.[47] Merz P, Freisleben B. Fitness landscapes, memetic algorithms, and greedy operators for graph bipartitioning. Evolutionary Computation, 2000, 8(1):61-91.[48] Misevicius A. An improved hybrid genetic algorithm:New results for the quadratic assignment problem. KnowledgeBased Systems, 2004, 17(2/3/4):65-73.[49] Benlic U, Hao J K. A multilevel memetic approach for improving graph k-partitions. IEEE Trans. Evolutionary Computation, 2011, 15(5):624-642.[50] Geiger M J. On operators and search space topology in multi-objective flow shop scheduling. European Journal of Operational Research, 2007, 181(1):195-206. |