|
Journal of Computer Science and Technology ›› 2019, Vol. 34 ›› Issue (3): 609-621.doi: 10.1007/s11390-019-1930-z
Special Issue: Artificial Intelligence and Pattern Recognition; Computer Graphics and Multimedia
• Artificial Intelligence and Pattern Recognition • Previous Articles Next Articles
Ri-Sheng Liu, Member, ACM, IEEE, Cai-Sheng Mao, Zhi-Hui Wang, Hao-Jie Li*, Member, ACM, IEEE
[1] Pan J, Sun D, Pfister H, Yang M H. Blind image deblurring using dark channel prior. In Proc. the 29th IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2016, pp.1628-1636. [2] Chan T F, Wong C K. Total variation blind deconvolution. IEEE Transactions on Image Processing, 1998, 7(3):370- 375. [3] Krishnan D, Fergus R. Fast image deconvolution using hyper-Laplacian priors. In Proc. the 23rd Annual Conference on Neural Information Processing Systems, Dec. 2009, pp.1033-1041. [4] Levin A, Weiss Y, Durand F, Freeman W T. Efficient marginal likelihood optimization in blind deconvolution. In Proc. the 24th IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2011, pp.2657-2664. [5] Sun L, Cho S, Wang J, Hays J. Edge-based blur kernel estimation using patch priors. In Proc. the 3rd IEEE International Conference on Computational Photography, Apr. 2013, Article No. 8. [6] Pan J, Hu Z, Su Z, Yang M H. Deblurring text images via L0-regularized intensity and gradient prior. In Proc. the 27th IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2014, pp.2901-2908. [7] Perrone D, Diethelm R, Favaro P. Blind deconvolution via lower-bounded logarithmic image priors. In Proc. the 10th International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, Jan. 2015, pp.112-125. [8] Cho S, Lee S. Fast motion deblurring. ACM Transactions on Graphics, 2009, 28(5):Article No. 145. [9] Krishnan D, Tay T, Fergus R. Blind deconvolution using a normalized sparsity measure. In Proc. the 24th IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2011, pp.233-240. [10] Zuo W, Ren D, Zhang D, Gu S, Zhang L. Learning iterationwise generalized shrinkage-thresholding operators for blind deconvolution. IEEE Transactions on Image Processing, 2016, 25(4):1751-1764. [11] Hu Z, Cho S, Wang J, Yang, M H. Deblurring low-light images with light streaks. In Proc. the 27th IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2014, pp.3382-3389. [12] Mao C, Liu R, Li H. Adaptive optimization with nested prior navigation for blind image deblurring. In Proc. the 4th IEEE International Conference on Multimedia Big Data, Sept. 2018, Article No. 37. [13] Xu L, Jia J. Two-phase kernel estimation for robust motion deblurring. In Proc. the 11th European Conference on Computer Vision, Sept. 2010, pp.157-170. [14] Fergus R, Singh B, Hertzmann A, Roweis S T, Freeman W T. Removing camera shake from a single photograph. ACM Transactions on Graphics, 2006, 25(3):787-794. [15] Levin A, Weiss Y, Durand F, Freeman W T. Understanding and evaluating blind deconvolution algorithms. In Proc. the 22nd IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2009, pp.1964-1971. [16] Wipf D, Zhang H. Revisiting Bayesian blind deconvolution. The Journal of Machine Learning Research, 2014, 15(1):3595-3634. [17] Harmeling S, Sra S, Hirsch M, Schölkopf B. Multiframe blind deconvolution, super-resolution, and saturation correction via incremental EM. In Proc. the 17th IEEE International Conference on Image Processing, Sept. 2010, pp.3313-3316. [18] Gong D, Tan M, Zhang Y, van den Hengel A, Shi Q. Blind image deconvolution by automatic gradient activation. In Proc. the 29th IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2016, pp.1827-1836. [19] Zhang K, Zuo W, Chen Y, Meng D, Zhang L. Beyond a Gaussian denoiser:Residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 2017, 26(7):3142-3155. [20] Ng M K, Chan R H, Tang W C. A fast algorithm for deblurring models with Neumann boundary conditions. SIAM Journal on Scientific Computing, 1999, 21(3):851-866. [21] Donatelli M, Estatico C, Martinelli A, Serra-Capizzano S. Improved image deblurring with anti-reflective boundary conditions and re-blurring. Inverse Problems, 2006, 22(6):2035-2053. [22] Liu R, Jia J. Reducing boundary artifacts in image deconvolution. In Proc. the 15th IEEE International Conference on Image Processing, Oct. 2008, pp.505-508. [23] Reeves S J. Fast image restoration without boundary artifacts. IEEE Transactions on Image Processing, 2005, 14(10):1448-1453. [24] Kruse J, Rother C, Schmidt U. Learning to push the limits of efficient FFT-based image deconvolution. In Proc. the 16th IEEE International Conference on Computer Vision, Oct. 2017, pp.4586-4594. [25] Zuo W, Meng D, Zhang L, Feng X, Zhang D. A generalized iterated shrinkage algorithm for non-convex sparse coding. In Proc. the 14th IEEE International Conference on Computer Vision, Dec. 2013, pp.217-224. [26] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trendsr in Machine Learning, 2011, 3(1):1-122. [27] Chan S H, Wang X, Elgendy O A. Plug-and-play ADMM for image restoration:Fixed-point convergence and applications. IEEE Transactions on Computational Imaging, 2017, 3(1):84-98. [28] Zhang K, Zuo W, Gu S, Zhang L. Learning deep CNN denoiser prior for image restoration. In Proc. the 30th IEEE Conference on Computer Vision and Pattern Recognition, Jul. 2017, pp.2808-2817. [29] Schaefer G, Stich M. UCID:An uncompressed color image database. In Proc. the 2004 SPIE Storage and Retrieval Methods and Applications for Multimedia, Dec. 2003, pp.472-480. [30] Zoran D, Weiss Y. From learning models of natural image patches to whole image restoration. In Proc. the 13th IEEE International Conference on Computer Vision, Nov. 2011, pp.479-486. [31] Perrone D, Favaro P. Total variation blind deconvolution:The devil is in the details. In Proc. the 27th IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2014, pp.2909-2916. [32] Lai W S, Huang J B, Hu Z, Ahuja N, Yang M H. A comparative study for single image blind deblurring. In Proc. the 29th IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2016, pp.1701-1709. |
[1] | Yang Liu, Ruili He, Xiaoqian Lv, Wei Wang, Xin Sun, Shengping Zhang. Is It Easy to Recognize Baby's Age and Gender? [J]. Journal of Computer Science and Technology, 2021, 36(3): 508-519. |
[2] | Dun Liang, Yuan-Chen Guo, Shao-Kui Zhang, Tai-Jiang Mu, Xiaolei Huang. Lane Detection: A Survey with New Results [J]. Journal of Computer Science and Technology, 2020, 35(3): 493-505. |
[3] | Bei-Ji Zou, Yun-Di Guo, Qi He, Ping-Bo Ouyang, Ke Liu, Zai-Liang Chen. 3D Filtering by Block Matching and Convolutional Neural Network for Image Denoising [J]. , 2018, 33(4): 838-848. |
|
|