|
Journal of Computer Science and Technology ›› 2020, Vol. 35 ›› Issue (6): 1446-1460.doi: 10.1007/s11390-020-0152-8
Special Issue: Artificial Intelligence and Pattern Recognition; Data Management and Data Mining
• Regular Paper • Previous Articles Next Articles
Yu-Yao Liu, Bo Yang, Senior Member, CCF, ACM, IEEE, Hong-Bin Pei and Jing Huang*, Member, CCF, ACM, IEEE
[1] Zheng L, Noroozi V, Yu P S. Joint deep modeling of users and items using reviews for recommendation. In Proc. the 10th ACM International Conference on Web Search and Data Mining, February 2017, pp.425-434. [2] He X, Liao L, Zhang H, Nie L, Hu X, Chua T S. Neural collaborative filtering. In Proc. the 26th International Conference on World Wide Web, April 2017, pp.173-182. [3] Koren Y, Bell R. Advances in collaborative filtering. In Recommender Systems Handbook (2nd edition), Ricci F, Rokach L, Shapira B (eds.), Springer-Verlag, 2015, pp.77-118. [4] Chen C, Zhang M, Liu Y, Ma S. Neural attentional rating regression with review-level explanations. In Proc. the 2018 International Conference on World Wide Web, April 2018, pp.1583-1592. [5] Chen X, Zhang Y, Qin Z. Dynamic explainable recommendation based on neural attentive models. In Proc. the 33rd AAAI Conf. Artificial Intelligence, July 2019, pp.53-60. [6] Zhao Q, Shi Y, Hong L. GB-CENT:Gradient boosted categorical embedding and numerical trees. In Proc. the 26th International Conference on World Wide Web, April 2017, pp.1311-1319. [7] He X, Pan J, Jin O et al. Practical lessons from predicting clicks on Ads at Facebook. In Proc. the 8th International Workshop on Data Mining for Online Advertising, August 2014, Article No. 5. [8] Wang X, He X, Feng F, Nie L, Chua T S. TEM:Treeenhanced embedding model for explainable recommendation. In Proc. the 2018 International Conference on World Wide Web, April 2018, pp.1543-1552. [9] Chen T, Guestrin C. XGBoost:A scalable tree boosting system. In Proc. the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2016, pp.785-794. [10] Friedman J H. Greedy function approximation:A gradient boosting machine. The Annals of Statistics, 2001, 29(5):1189-1232. [11] Breiman L. Random forests. Machine Learning, 2001, 45(1):5-32. [12] Cho, K, van Merrienboer B, Gülçehre Ç et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv:1406.1078, 2014. https://arxiv.org/abs/1406.1078, March 2020. [13] Kim Y. Convolutional neural networks for sentence classification. arXiv:1408.5882, 2014. https://arxiv.org/abs/1408.5882, March 2020. [14] Mnih A, Salakhutdinov R R. Probabilistic matrix factorization. In Proc. the 21st Annual Conference on Neural Information Processing Systems, December 2007, pp.1257-1264. [15] He X, Chen T, Kan M Y, Chen X. TriRank:Review-aware explainable recommendation by modeling aspects. In Proc. the 24th ACM International Conference on Information and Knowledge Management, October 2015, pp.1661-1670. [16] Ling G, Lyu M R, King I. Ratings meet reviews, a combined approach to recommend. In Proc. the 8th ACM Conference on Recommender Systems, October 2014, pp.105-112. [17] McAuley J, Leskovec J. Hidden factors and hidden topics:Understanding rating dimensions with review text. In Proc. the 7th ACM Conference on Recommender Systems, October 2013, pp.165-172. [18] Tan Y, Zhang M, Liu Y, Ma S. Rating-boosted latent topics:Understanding users and items with ratings and reviews. In Proc. the 25th International Joint Conference on Artificial Intelligence, July 2016, pp.2640-2646. [19] Zhang Y, Lai G, Zhang M, Zhang Y, Liu Y, Ma S. Explicit factor models for explainable recommendation based on phrase-level sentiment analysis. In Proc. the 37th International ACM SIGIR Conference on Research Development in Information Retrieval, July 2014, pp.83-92. [20] Zhang Y, Zhang M, Zhang Y et al. Daily-aware personalized recommendation based on feature-level time series analysis. In Proc. the 24th International Conference on World Wide Web, May 2015, pp.1373-1383. [21] Zhang Y. Incorporating phrase-level sentiment analysis on textual reviews for personalized recommendation. In Proc. the 8th ACM International Conference on Web Search and Data Mining, February 2015, pp.435-440. [22] Shi C, Kong X, Huang Y, Yu P S, Wu B. HeteSim:A general framework for relevance measure in heterogeneous networks. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(10):2479-2492. [23] Shi C, Hu B, Zhao W X, Yu P S. Heterogeneous information network embedding for recommendation. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(2):357-370. [24] Han X, Shi C, Wang S, Yu P S, Song L. Aspect-level deep collaborative filtering via heterogeneous information networks. In Proc. the 27th International Joint Conference on Artificial Intelligence, July 2018, pp.3393-3399. [25] Wang X, Wang D, Xu C, He X, Cao Y, Chua T S. Explainable reasoning over knowledge graphs for recommendation. In Proc. the 33rd AAAI Conference on Artificial Intelligence, July 2019, pp.5329-5336. [26] Gan M X, Sun L, Jiang R. Trinity:Walking on a userobject-tag heterogeneous network for personalised recommendation. Journal of Computer Science and Technology, 2016, 31(3):577-594. [27] Guo L, Ma J, Jiang H R, Chen Z M, Xing C M. Social trust aware item recommendation for implicit feedback. Journal of Computer Science and Technology, 2015, 30(5):1039-1053. [28] Guo L, Wen Y F, Wang X H. Exploiting pre-trained network embeddings for recommendations in social networks. Journal of Computer Science and Technology, 2018, 33(4):682-696. [29] Xin X, Lin C Y, Wei X C, Huang H Y. When factorization meets heterogeneous latent topics:An interpretable cross site recommendation framework. Journal of Computer Science and Technology, 2015, 30(4):917-932. [30] Costa F, Ouyang S, Dolog P et al. Automatic generation of natural language explanations. In Proc. the 23rd International Conference on Intelligent User Interfaces Companion, March 2018, Article No. 57. [31] Tao Y, Jia Y, Wang N, Wang H. The facT:Taming latent factor models for explainability with factorization trees. In Proc. the 42nd Int. ACM SIGIR Conference on Research and Development in Information Retrieval, July 2019, pp.295-304. [32] Gao J Y, Wang X T, Wang Y S, Xie X. Explainable recommendation through attentive multi-view learning. In Proc. the 33rd AAAI Conference on Artificial Intelligence, January 2019, pp.3622-3629. [33] Chen Z, Wang X, Xie X, Wu T, Bu G Q, Wang Y N, Chen E H. Co-attentive multi-task learning for explainable recommendation. In Proc. the 28th International Joint Conference on Artificial Intelligence, August 2019, pp.2137-2143. |
[1] | Reza Jafari Ziarani, Reza Ravanmehr. Serendipity in Recommender Systems: A Systematic Literature Review [J]. Journal of Computer Science and Technology, 2021, 36(2): 375-396. |
[2] | Yang Liu, Zhi Li, Wei Huang, Tong Xu, En-Hong Chen. Exploiting Structural and Temporal Influence for Dynamic Social-Aware Recommendation [J]. Journal of Computer Science and Technology, 2020, 35(2): 281-294. |
[3] | Qi Liu, Hong-Ke Zhao, Le Wu, Zhi Li, En-Hong Chen. Illuminating Recommendation by Understanding the Explicit Item Relations [J]. , 2018, 33(4): 739-755. |
[4] | Ming-Xin Gan, Lily Sun, Rui Jiang. Trinity: Walking on a User-Object-Tag Heterogeneous Network for Personalised Recommendations [J]. , 2016, 31(3): 577-594. |
[5] | Xin Xin, Chin-Yew Lin, Xiao-Chi Wei, He-Yan Huang. When Factorization Meets Heterogeneous Latent Topics: An Interpretable Cross-Site Recommendation Framework [J]. , 2015, 30(4): 917-932. |
[6] | Xiang-Liang Zhang, Tak Man Desmond Lee, and Georgios Pitsilis. Securing Recommender Systems Against Shilling Attacks Using Social-Based Clustering [J]. , 2013, 28(4): 616-624. |
[7] | Hui-Feng Sun, Jun-Liang Chen, Gang Yu, Chuan-Chang Liu, Yong Peng, Guang Chen, and Bo Cheng. JacUOD: A New Similarity Measurement for Collaborative Filtering [J]. , 2012, 27(6): 1252-1260. |
[8] | Marcelo G. Armentano, Daniela Godoy, and Analia Amandi. Topology-Based Recommendation of Users in Micro-Blogging Communities [J]. , 2012, 27(3): 624-634. |
|