Journal of Computer Science and Technology ›› 2020, Vol. 35 ›› Issue (6): 1446-1460.doi: 10.1007/s11390-020-0152-8

Special Issue: Artificial Intelligence and Pattern Recognition; Data Management and Data Mining

• Regular Paper • Previous Articles     Next Articles

Neural Explainable Recommender Model Based on Attributes and Reviews

Yu-Yao Liu, Bo Yang, Senior Member, CCF, ACM, IEEE, Hong-Bin Pei and Jing Huang*, Member, CCF, ACM, IEEE        

  1. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University Changchun 130012, China;College of Computer Science and Technology, Jilin University, Changchun 130012, China
  • Received:2019-11-01 Revised:2020-05-07 Online:2020-11-20 Published:2020-12-01
  • Contact: Jing Huang E-mail:huangjing@jlu.edu.cn
  • About author:Yu-Yao Liu received his B.S. degree in computer science and technology from College of Computer Science and Technology at Jilin University, Changchun, in 2017. He is now a Master student at the same college, majoring in computer software and theory. His main research interests at the present stage include machine learning and recommender system.
  • Supported by:
    This work was supported by the University Science and Technology Research Plan Project of Jilin Province of China under Grant No. JJKH20190156KJ, the National Natural Science Foundation of China under Grant Nos. 61572226 and 61876069, Jilin Province Key Scientific and Technological Research and Development Project under Grant Nos. 20180201067GX and 20180201044GX, and Jilin Province Natural Science Foundation under Grant No. 20200201036JC.

Explainable recommendation, which can provide reasonable explanations for recommendations, is increasingly important in many fields. Although traditional embedding-based models can learn many implicit features, resulting in good performance, they cannot provide the reason for their recommendations. Existing explainable recommender methods can be mainly divided into two types. The first type models highlight reviews written by users to provide an explanation. For the second type, attribute information is taken into consideration. These approaches only consider one aspect and do not make the best use of the existing information. In this paper, we propose a novel neural explainable recommender model based on attributes and reviews (NERAR) for recommendation that combines the processing of attribute features and review features. We employ a tree-based model to extract and learn attribute features from auxiliary information, and then we use a time-aware gated recurrent unit (T-GRU) to model user review features and process item review features based on a convolutional neural network (CNN). Extensive experiments on Amazon datasets demonstrate that our model outperforms the state-of-the-art recommendation models in accuracy of recommendations. The presented examples also show that our model can offer more reasonable explanations. Crowd-sourcing based evaluations are conducted to verify our model’s superiority in explainability.

Key words: recommender system; explainable recommendation; review usefulness; attribute usefulness;

[1] Zheng L, Noroozi V, Yu P S. Joint deep modeling of users and items using reviews for recommendation. In Proc. the 10th ACM International Conference on Web Search and Data Mining, February 2017, pp.425-434.
[2] He X, Liao L, Zhang H, Nie L, Hu X, Chua T S. Neural collaborative filtering. In Proc. the 26th International Conference on World Wide Web, April 2017, pp.173-182.
[3] Koren Y, Bell R. Advances in collaborative filtering. In Recommender Systems Handbook (2nd edition), Ricci F, Rokach L, Shapira B (eds.), Springer-Verlag, 2015, pp.77-118.
[4] Chen C, Zhang M, Liu Y, Ma S. Neural attentional rating regression with review-level explanations. In Proc. the 2018 International Conference on World Wide Web, April 2018, pp.1583-1592.
[5] Chen X, Zhang Y, Qin Z. Dynamic explainable recommendation based on neural attentive models. In Proc. the 33rd AAAI Conf. Artificial Intelligence, July 2019, pp.53-60.
[6] Zhao Q, Shi Y, Hong L. GB-CENT:Gradient boosted categorical embedding and numerical trees. In Proc. the 26th International Conference on World Wide Web, April 2017, pp.1311-1319.
[7] He X, Pan J, Jin O et al. Practical lessons from predicting clicks on Ads at Facebook. In Proc. the 8th International Workshop on Data Mining for Online Advertising, August 2014, Article No. 5.
[8] Wang X, He X, Feng F, Nie L, Chua T S. TEM:Treeenhanced embedding model for explainable recommendation. In Proc. the 2018 International Conference on World Wide Web, April 2018, pp.1543-1552.
[9] Chen T, Guestrin C. XGBoost:A scalable tree boosting system. In Proc. the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2016, pp.785-794.
[10] Friedman J H. Greedy function approximation:A gradient boosting machine. The Annals of Statistics, 2001, 29(5):1189-1232.
[11] Breiman L. Random forests. Machine Learning, 2001, 45(1):5-32.
[12] Cho, K, van Merrienboer B, Gülçehre Ç et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv:1406.1078, 2014. https://arxiv.org/abs/1406.1078, March 2020.
[13] Kim Y. Convolutional neural networks for sentence classification. arXiv:1408.5882, 2014. https://arxiv.org/abs/1408.5882, March 2020.
[14] Mnih A, Salakhutdinov R R. Probabilistic matrix factorization. In Proc. the 21st Annual Conference on Neural Information Processing Systems, December 2007, pp.1257-1264.
[15] He X, Chen T, Kan M Y, Chen X. TriRank:Review-aware explainable recommendation by modeling aspects. In Proc. the 24th ACM International Conference on Information and Knowledge Management, October 2015, pp.1661-1670.
[16] Ling G, Lyu M R, King I. Ratings meet reviews, a combined approach to recommend. In Proc. the 8th ACM Conference on Recommender Systems, October 2014, pp.105-112.
[17] McAuley J, Leskovec J. Hidden factors and hidden topics:Understanding rating dimensions with review text. In Proc. the 7th ACM Conference on Recommender Systems, October 2013, pp.165-172.
[18] Tan Y, Zhang M, Liu Y, Ma S. Rating-boosted latent topics:Understanding users and items with ratings and reviews. In Proc. the 25th International Joint Conference on Artificial Intelligence, July 2016, pp.2640-2646.
[19] Zhang Y, Lai G, Zhang M, Zhang Y, Liu Y, Ma S. Explicit factor models for explainable recommendation based on phrase-level sentiment analysis. In Proc. the 37th International ACM SIGIR Conference on Research Development in Information Retrieval, July 2014, pp.83-92.
[20] Zhang Y, Zhang M, Zhang Y et al. Daily-aware personalized recommendation based on feature-level time series analysis. In Proc. the 24th International Conference on World Wide Web, May 2015, pp.1373-1383.
[21] Zhang Y. Incorporating phrase-level sentiment analysis on textual reviews for personalized recommendation. In Proc. the 8th ACM International Conference on Web Search and Data Mining, February 2015, pp.435-440.
[22] Shi C, Kong X, Huang Y, Yu P S, Wu B. HeteSim:A general framework for relevance measure in heterogeneous networks. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(10):2479-2492.
[23] Shi C, Hu B, Zhao W X, Yu P S. Heterogeneous information network embedding for recommendation. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(2):357-370.
[24] Han X, Shi C, Wang S, Yu P S, Song L. Aspect-level deep collaborative filtering via heterogeneous information networks. In Proc. the 27th International Joint Conference on Artificial Intelligence, July 2018, pp.3393-3399.
[25] Wang X, Wang D, Xu C, He X, Cao Y, Chua T S. Explainable reasoning over knowledge graphs for recommendation. In Proc. the 33rd AAAI Conference on Artificial Intelligence, July 2019, pp.5329-5336.
[26] Gan M X, Sun L, Jiang R. Trinity:Walking on a userobject-tag heterogeneous network for personalised recommendation. Journal of Computer Science and Technology, 2016, 31(3):577-594.
[27] Guo L, Ma J, Jiang H R, Chen Z M, Xing C M. Social trust aware item recommendation for implicit feedback. Journal of Computer Science and Technology, 2015, 30(5):1039-1053.
[28] Guo L, Wen Y F, Wang X H. Exploiting pre-trained network embeddings for recommendations in social networks. Journal of Computer Science and Technology, 2018, 33(4):682-696.
[29] Xin X, Lin C Y, Wei X C, Huang H Y. When factorization meets heterogeneous latent topics:An interpretable cross site recommendation framework. Journal of Computer Science and Technology, 2015, 30(4):917-932.
[30] Costa F, Ouyang S, Dolog P et al. Automatic generation of natural language explanations. In Proc. the 23rd International Conference on Intelligent User Interfaces Companion, March 2018, Article No. 57.
[31] Tao Y, Jia Y, Wang N, Wang H. The facT:Taming latent factor models for explainability with factorization trees. In Proc. the 42nd Int. ACM SIGIR Conference on Research and Development in Information Retrieval, July 2019, pp.295-304.
[32] Gao J Y, Wang X T, Wang Y S, Xie X. Explainable recommendation through attentive multi-view learning. In Proc. the 33rd AAAI Conference on Artificial Intelligence, January 2019, pp.3622-3629.
[33] Chen Z, Wang X, Xie X, Wu T, Bu G Q, Wang Y N, Chen E H. Co-attentive multi-task learning for explainable recommendation. In Proc. the 28th International Joint Conference on Artificial Intelligence, August 2019, pp.2137-2143.
[1] Reza Jafari Ziarani, Reza Ravanmehr. Serendipity in Recommender Systems: A Systematic Literature Review [J]. Journal of Computer Science and Technology, 2021, 36(2): 375-396.
[2] Yang Liu, Zhi Li, Wei Huang, Tong Xu, En-Hong Chen. Exploiting Structural and Temporal Influence for Dynamic Social-Aware Recommendation [J]. Journal of Computer Science and Technology, 2020, 35(2): 281-294.
[3] Qi Liu, Hong-Ke Zhao, Le Wu, Zhi Li, En-Hong Chen. Illuminating Recommendation by Understanding the Explicit Item Relations [J]. , 2018, 33(4): 739-755.
[4] Ming-Xin Gan, Lily Sun, Rui Jiang. Trinity: Walking on a User-Object-Tag Heterogeneous Network for Personalised Recommendations [J]. , 2016, 31(3): 577-594.
[5] Xin Xin, Chin-Yew Lin, Xiao-Chi Wei, He-Yan Huang. When Factorization Meets Heterogeneous Latent Topics: An Interpretable Cross-Site Recommendation Framework [J]. , 2015, 30(4): 917-932.
[6] Xiang-Liang Zhang, Tak Man Desmond Lee, and Georgios Pitsilis. Securing Recommender Systems Against Shilling Attacks Using Social-Based Clustering [J]. , 2013, 28(4): 616-624.
[7] Hui-Feng Sun, Jun-Liang Chen, Gang Yu, Chuan-Chang Liu, Yong Peng, Guang Chen, and Bo Cheng. JacUOD: A New Similarity Measurement for Collaborative Filtering [J]. , 2012, 27(6): 1252-1260.
[8] Marcelo G. Armentano, Daniela Godoy, and Analia Amandi. Topology-Based Recommendation of Users in Micro-Blogging Communities [J]. , 2012, 27(3): 624-634.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhou Di;. A Recovery Technique for Distributed Communicating Process Systems[J]. , 1986, 1(2): 34 -43 .
[2] Chen Shihua;. On the Structure of Finite Automata of Which M Is an(Weak)Inverse with Delay τ[J]. , 1986, 1(2): 54 -59 .
[3] Wang Jianchao; Wei Daozheng;. An Effective Test Generation Algorithm for Combinational Circuits[J]. , 1986, 1(4): 1 -16 .
[4] Chen Zhaoxiong; Gao Qingshi;. A Substitution Based Model for the Implementation of PROLOG——The Design and Implementation of LPROLOG[J]. , 1986, 1(4): 17 -26 .
[5] Huang Heyan;. A Parallel Implementation Model of HPARLOG[J]. , 1986, 1(4): 27 -38 .
[6] Zheng Guoliang; Li Hui;. The Design and Implementation of the Syntax-Directed Editor Generator(SEG)[J]. , 1986, 1(4): 39 -48 .
[7] Huang Xuedong; Cai Lianhong; Fang Ditang; Chi Bianjin; Zhou Li; Jiang Li;. A Computer System for Chinese Character Speech Input[J]. , 1986, 1(4): 75 -83 .
[8] Xu Xiaoshu;. Simplification of Multivalued Sequential SULM Network by Using Cascade Decomposition[J]. , 1986, 1(4): 84 -95 .
[9] Tang Tonggao; Zhao Zhaokeng;. Stack Method in Program Semantics[J]. , 1987, 2(1): 51 -63 .
[10] Zhong Renbao; Xing Lin; Ren Zhaoyang;. An Interactive System SDI on Microcomputer[J]. , 1987, 2(1): 64 -71 .

ISSN 1000-9000(Print)

         1860-4749(Online)
CN 11-2296/TP

Home
Editorial Board
Author Guidelines
Subscription
Journal of Computer Science and Technology
Institute of Computing Technology, Chinese Academy of Sciences
P.O. Box 2704, Beijing 100190 P.R. China
Tel.:86-10-62610746
E-mail: jcst@ict.ac.cn
 
  Copyright ©2015 JCST, All Rights Reserved