|
Journal of Computer Science and Technology ›› 2021, Vol. 36 ›› Issue (2): 323-333.doi: 10.1007/s11390-021-0782-5
Special Issue: Emerging Areas
• Special Section on AI and Big Data Analytics in Biology and Medicine • Previous Articles Next Articles
Yang-Jie Cao1, Member, CCF, Shuang Wu1, Chang Liu1, Nan Lin1, Yuan Wang2, Cong Yang1,*, Member, CCF, and Jie Li1,3, Senior Member, IEEE
[1] Cootes T F, Taylor C J, Cooper D H et al. Active shape models-Their training and application. Computer Vision and Image Understanding, 1995, 61(1):38-59. DOI:10.1006/cviu.1995.1004. [2] Soliman A, Khalifa F, Elnakib A et al. Accurate lungs segmentation on CT chest images by adaptive appearance-guided shape modeling. IEEE Transactions on Medical Imaging, 2016, 36(1):263-276. DOI:10.1109/TMI.2016.2606370. [3] Cootes T F, Edwards G J, Taylor C J. Active appearance models. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2001, 23(6):681-685. DOI:10.1109/34.927467. [4] Matthews l, Baker S. Active appearance models revisited. International Journal of Computer Vision, 2004, 60:135-164. DOI:10.1023/B:VISI.0000029666.37597.d3 [5] Wachinger C, Fritscher K, Sharp G et al. Contourdriven atlas-based segmentation. IEEE Transactions on Medical Imaging, 2015, 34(12):2492-2505. DOI:10.1109/TMI.2015.2442753. [6] Maintz J B, Viergever M A. A survey of medical image registration. Medical Image Analysis, 1998, 2(1):1-36. DOI:10.1016/S1361-8415(01)80026-8. [7] Litjens G, Kooi T, Bejnordi B E et al. A survey on deep learning in medical image analysis. Medical Image Analysis, 2017, 42:60-88. DOI:10.1016/j.media.2017.07.005. [8] LeCun Y, Bengio Y, Hinton G E. Deep learning. Nature, 2015, 521(7553):436-444. DOI:10.1038/nature14539. [9] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In Proc. the 26th Int. Conference on Neural Information Processing Systems, December 2012, pp.1097-1105. DOI:10.5555/2999134.2999257. [10] Badrinarayanan V, Handa V, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv:1505.07293, 2015. https://arxiv.org/pdf/1505.07293.pdf, March, 2020. [11] Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. DOI:10.1109/TPAMI.2016.2644615. [12] Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation. In Proc. the 2015 IEEE International Conference on Computer Vision, December 2015, pp.1520-1528. DOI:10.1109/ICCV.2015.178. [13] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In Proc. the 2015 IEEE International Conference on Computer Vision and Pattern Recognition, June 2015, pp.3431-3440. DOI:10.1109/CVPR.2015.7298965. [14] Ronneberger O, Fischer P, Brox T. U-Net:Convolutional networks for biomedical image segmentation. In Proc. the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, October 2015, pp.234-241. DOI:10.1007/978-3-319-24574-428. [15] Gu Z W, Cheng J, Fu H Z et al. CE-Net:Context encoder network for 2D medical image segmentation. IEEE Transactions on Medical Imaging, 2019, 38(10):2281-2292. DOI:10.1109/TMI.2019.2903562. [16] Wang G, Liu X, Li C et al. A noise-robust framework for automatic segmentation of COVID-19 pneumonia lesions from CT images. IEEE Transactions on Medical Imaging, 2020, 39(8):2653-2663. DOI:10.1109/TMI.2020.3000314. [17] Hu X, Li F, Samaras D et al. Topology-preserving deep image segmentation. In Proc. the 33rd Annual Conference of Neural Information Processing Systems, December 2019, pp.5658-5669. [18] Karimi D, Salcudean S E. Reducing the Hausdorff Distance in medical image segmentation with convolutional neural networks. IEEE Transactions on Medical Imaging, 2020, 39(2):499-513. DOI:10.1109/TMI.2019.2930068. [19] Moltz J H, Hänsch A, Lassen-Schmidt B et al. Learning a loss function for segmentation:A feasibility study. In Proc. the 17th IEEE Int. Biomedical Imaging Symp., April 2020, pp.357-360. DOI:10.1109/ISBI45749.2020.9098557. [20] Hinton G E, Alex K, Wang S D. Transforming autoencoders. In Proc. the 21st Int. Conference on Artificial Neural Networks, June 2011, pp.44-51. DOI:10.1007/978-3-642-21735-76. [21] Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules. In Proc. the 31 st Int. Conference on Neural Information Processing Systems, December 2017, pp.3856-3866. [22] LaLonde R, Bagci U. Capsules for object segmentation. arXiv:1804.04241, 2018. https://arxiv.org/pdf/1804.0424-1v1.pdf, March, 2020. [23] Kromm C, Rohr K. Inception capsule network for retinal blood vessel segmentation and centerline extraction. In Proc. the 17th IEEE Int. Biomedical Imaging Symp., April 2020, pp.1223-1226. DOI:10.1109/ISBI45749.2020.9098538. [24] He Y, Qin W, Wu Y et al. Automatic left ventricle segmentation from cardiac magnetic resonance images using a capsule network. Journal of X-Ray Science and Technology, 2020, 28(3):541-553. DOI:10.3233/XST-190621. [25] Hara K, Saito D, Shouno H. Analysis of function of rectified linear unit used in deep learning. In Proc. the 2015 International Joint Conference on Neural Networks, July 2015. DOI:10.1109/IJCNN.2015.7280578. [26] Loffe S, Szegedy C. Batch normalization:Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167, 2015. https://arxiv.org/pdf/1502.03167.pdf, March 2020. [27] Bernard O, Lalande A, Zotti C et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis:Is the problem solved? IEEE Transactions on Medical Imaging, 2018, 37(11):2514-2525. DOI:10.1109/TMI.2018.2837502. [28] Chen L, Papandreou G, Schroff F et al. Rethinking atrous convolution for semantic image segmentation. arXiv:1706.05587, 2017. https://arxiv.org/abs/1706.05587, June 2020. [29] Zhou Z W, Siddiquee M, Tajbakhsh N et al. UNet++:A nested U-Net architecture for medical image segmentation. In Proc. the 4th International Workshop on Deep Learning in Medical Image Analysis, September 2018, pp.3-11. DOI:10.1007/978-3-030-00889-51. |
[1] | Wen-Qian Deng, Xue-Mei Li, Xifeng Gao, Cai-Ming Zhang. A Modified Fuzzy C-Means Algorithm for Brain MR Image Segmentation and Bias Field Correction [J]. , 2016, 31(3): 501-511. |
[2] | Mahsa Chitsaz, and Chaw Seng Woo, Member, IEEE. Software Agent with Reinforcement Learning Approach for Medical Image Segmentation [J]. , 2011, 26(2): 247-255. |
[3] | Ma Feng; Xia Shaowei;. A Multiscale Approach to Automatic Medical Image Segmentation Using Self-Organizing Map [J]. , 1998, 13(5): 402-409. |
|
|