|
Journal of Computer Science and Technology ›› 2021, Vol. 36 ›› Issue (4): 778-791.doi: 10.1007/s11390-021-1356-2
Special Issue: Data Management and Data Mining
• Special Section on AI4DB and DB4AI • Previous Articles Next Articles
Songjie Niu, Student Member, CCF, and Shimin Chen*, Senior Member, IEEE
[1] Malewicz G, Austern M H, Bik A J C, Dehnert J C, Horn I, Leiser N, Czajkowski G. Pregel:A system for large-scale graph processing. In Proc. the 2010 ACM SIGMOD International Conference on Management of Data, June 2010, pp.135-146. DOI:10.1145/1807167.1807184. [2] Gonzalez J E, Low Y, Gu H, Bickson D, Guestrin C. PowerGraph:Distributed graph-parallel computation on natural graphs. In Proc. the 10th USENIX Symposium on Operating Systems Design and Implementation, October 2012, pp.17-30. [3] Xin R S, Gonzalez J E, Franklin M J, Stoica I. GraphX:A resilient distributed graph system on Spark. In Proc. the 1st International Workshop on Graph Data Management Experiences and Systems, June 2013, Article No. 2. DOI:10.1145/2484425.2484427. [4] Niu S, Chen S. Optimizing CPU cache performance for Pregel-like graph computation. In Proc. the 31st IEEE International Conference on Data Engineering Workshops, April 2015, pp.149-154. DOI:10.1109/ICDEW.2015.7129568. [5] Han M, Daudjee K, Ammar K, Özsu M T, Wang X, Jin T. An experimental comparison of Pregel-like graph processing systems. Proc. VLDB Endow., 2014, 7(12):1047-1058. DOI:10.14778/2732977.2732980. [6] Iosup A, Hegeman T, Ngai W L et al. LDBC graphalytics:A benchmark for large-scale graph analysis on parallel and distributed platforms. Proc. VLDB Endow., 2016, 9(13):1317-1328. DOI:10.14778/3007263.3007270. [7] Ngai W L, Hegeman T, Heldens S, Iosup A. Granula:Toward fine-grained performance analysis of largescale graph processing platforms. In Proc. the 5th International Workshop on Graph Data-management Experiences & Systems, May 2017, Article No. 8. DOI:10.1145/3078447.3078455. [8] Herodotou H, Lim H, Luo G, Borisov N, Dong L, Cetin F B, Babu S. Starfish:A self-tuning system for big data analytics. In Proc. the 5th Biennial Conference on Innovative Data Systems Research, January 2011, pp.261-272. [9] Venkataraman S, Yang Z, Franklin M J, Recht B, Stoica I. Ernest:Efficient performance prediction for large-scale advanced analytics. In Proc. the 13th USENIX Symposium on Networked Systems Design and Implementation, March 2016, pp.363-378. [10] Pan S J, Yang Q. A survey on transfer learning. IEEE Trans. Knowledge and Data Engineering, 2010, 22(10):1345-1359. DOI:10.1109/TKDE.2009.191. [11] Weiss K R, Khoshgoftaar T M, Wang D. A survey of transfer learning. J. Big Data, 2016, 3:Article No. 9. DOI:10.1186/s40537-016-0043-6. [12] Tzeng E, Hoffman J, Zhang N, Saenko K, Darrell T. Deep domain confusion:Maximizing for domain invariance. arXiv:1412.3474, 2014. https://arxiv.org/pdf/1412.3474.pdf, May 2021. [13] Long M, Cao Y, Wang J, Jordan M I. Learning transferable features with deep adaptation networks. In Proc. the 32nd International Conference on Machine Learning, July 2015, pp.97-105. [14] Long M, Zhu H, Wang J, Jordan M I. Deep transfer learning with joint adaptation networks. In Proc. the 34th International Conference on Machine Learning, August 2017, pp.2208-2217. [15] Sun B, Saenko K. Deep CORAL:Correlation alignment for deep domain adaptation. In Proc. the 2016 European Conference on Computer Vision Workshops, October 2016, pp.443-450. DOI:10.1007/978-3-319-49409-835. [16] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In Proc. the 2016 IEEE Conference on Computer Vision and Pattern Recognition, June 2016, pp.770-778. DOI:10.1109/CVPR.2016.90. [17] Barker K J, Pakin S, Kerbyson D J. A performance model of the Krak hydrodynamics application. In Proc. the 2006 International Conference on Parallel Processing, August 2006, pp.245-254. DOI:10.1109/ICPP.2006.11. [18] Kerbyson D J, Alme H J, Hoisie A, Petrini F, Wasserman H J, Gittings M L. Predictive performance and scalability modeling of a large-scale application. In Proc. the 2001 ACM/IEEE Conference on Supercomputing, November 2001, Article No. 37. DOI:10.1145/582034.582071. [19] Sundaram-Stukel D, Vernon M K. Predictive analysis of a wavefront application using logGP. In Proc. the 1999 ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, May 1999, pp.141-150. DOI:10.1145/301104.301117. [20] Bhattacharyya A, Hoefler T. PEMOGEN:Automatic adaptive performance modeling during program runtime. In Proc. the 23rd International Conference on Parallel Architectures and Compilation, August 2014, pp.393-404. DOI:10.1145/2628071.2628100. [21] Bhattacharyya A, Kwasniewski G, Hoefler T. Using compiler techniques to improve automatic performance modeling. In Proc. the 2015 International Conference on Parallel Architectures and Compilation, October 2015, pp.468-479. DOI:10.1109/PACT.2015.39. [22] Calotoiu A, Beckingsale D, Earl C W, Hoefler T, Karlin I, Schulz M, Wolf F. Fast multi-parameter performance modeling. In Proc. the 2016 IEEE International Conference on Cluster Computing, September 2016, pp.172-181. DOI:10.1109/CLUSTER.2016.57. [23] Sun J, Sun G, Zhan S, Zhang J, Chen Y. Automated performance modeling of HPC applications using machine learning. IEEE Trans. Computers, 2020, 69(5):749-763. DOI:10.1109/TC.2020.2964767. [24] Pan S J, Tsang I W, Kwok J T, Yang Q. Domain adaptation via transfer component analysis. IEEE Trans. Neural Networks, 2011, 22(2):199-210. DOI:10.1109/TNN.2010.2091281. [25] Sun B, Feng J, Saenko K. Return of frustratingly easy domain adaptation. In Proc. the 30th AAAI Conference on Artificial Intelligence, February 2016, pp.2058-2065. [26] Tzeng E, Hoffman J, Darrell T, Saenko K. Simultaneous deep transfer across domains and tasks. In Proc. the 2015 IEEE International Conference on Computer Vision, December 2015, pp.4068-4076. DOI:10.1109/ICCV.2015.463. [27] Long M, Zhu H, Wang J, Jordan M I. Unsupervised domain adaptation with residual transfer networks. In Proc. the 30th Annual Conference on Neural Information Processing Systems, December 2016, pp.136-144. [28] Leskovec J, Sosič R. SNAP:A general-purpose network analysis and graph-mining library. ACM Trans. Intell. Syst. Technol., 2016, 8(1):Article No. 1. DOI:10.1145/2898361. [29] Chakrabarti D, Zhan Y, Faloutsos C. R-MAT:A recursive model for graph mining. In Proc. the 4th SIAM International Conference on Data Mining, April 2004, pp.442-446. DOI:10.1137/1.9781611972740.43. [30] Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the Internet topology. In Proc. the 1999 ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, August 30-September 3, 1999, pp.251-262. DOI:10.1145/316188.316229. [31] Leskovec J, Chakrabarti D, Kleinberg J M, Faloutsos C. Realistic, mathematically tractable graph generation and evolution, using Kronecker multiplication. In Proc. the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, October 2005, pp.133-145. DOI:10.1007/1156412617. [32] Park H, Kim M. TrillionG:A trillion-scale synthetic graph generator using a recursive vector model. In Proc. the 2017 ACM International Conference on Management of Data, May 2017, pp.913-928. DOI:10.1145/3035918.3064014. [33] Boldi P, Vigna S. The webgraph framework I:Compression techniques. In Proc. the 13th International Conference on World Wide Web, May 2004, pp.595-602. DOI:10.1145/988672.988752. |
[1] | Xin-Feng Wang, Xiang Zhou, Jia-Hua Rao, Zhu-Jin Zhang, and Yue-Dong Yang. Imputing DNA Methylation by Transferred Learning Based Neural Network [J]. Journal of Computer Science and Technology, 2022, 37(2): 320-329. |
[2] | Xin Zhang, Siyuan Lu, Shui-Hua Wang, Xiang Yu, Su-Jing Wang, Lun Yao, Yi Pan, and Yu-Dong Zhang. Diagnosis of COVID-19 Pneumonia via a Novel Deep Learning Architecture [J]. Journal of Computer Science and Technology, 2022, 37(2): 330-343. |
[3] | Songjie Niu, Dongyan Zhou. SOOP: Efficient Distributed Graph Computation Supporting Second-Order Random Walks [J]. Journal of Computer Science and Technology, 2021, 36(5): 985-1001. |
[4] | Sheng-Luan Hou, Xi-Kun Huang, Chao-Qun Fei, Shu-Han Zhang, Yang-Yang Li, Qi-Lin Sun, Chuan-Qing Wang. A Survey of Text Summarization Approaches Based on Deep Learning [J]. Journal of Computer Science and Technology, 2021, 36(3): 633-663. |
[5] | Lan Chen, Juntao Ye, Xiaopeng Zhang. Multi-Feature Super-Resolution Network for Cloth Wrinkle Synthesis [J]. Journal of Computer Science and Technology, 2021, 36(3): 478-493. |
[6] | Yu-Jie Yuan, Yukun Lai, Tong Wu, Lin Gao, Li-Gang Liu. A Revisit of Shape Editing Techniques: From the Geometric to the Neural Viewpoint [J]. Journal of Computer Science and Technology, 2021, 36(3): 520-554. |
[7] | Wei Du, Yu Sun, Hui-Min Bao, Liang Chen, Ying Li, Yan-Chun Liang. DeepHBSP: A Deep Learning Framework for Predicting Human Blood-Secretory Proteins Using Transfer Learning [J]. Journal of Computer Science and Technology, 2021, 36(2): 234-247. |
[8] | Jun Gao, Paul Liu, Guang-Di Liu, Le Zhang. Robust Needle Localization and Enhancement Algorithm for Ultrasound by Deep Learning and Beam Steering Methods [J]. Journal of Computer Science and Technology, 2021, 36(2): 334-346. |
[9] | Hua Chen, Juan Liu, Qing-Man Wen, Zhi-Qun Zuo, Jia-Sheng Liu, Jing Feng, Bao-Chuan Pang, Di Xiao. CytoBrain: Cervical Cancer Screening System Based on Deep Learning Technology [J]. Journal of Computer Science and Technology, 2021, 36(2): 347-360. |
[10] | Jason Liu, Pedro Espina, Xian-He Sun. A Study on Modeling and Optimization of Memory Systems [J]. Journal of Computer Science and Technology, 2021, 36(1): 71-89. |
[11] | Andrea Caroppo, Alessandro Leone, Pietro Siciliano. Comparison Between Deep Learning Models and Traditional Machine Learning Approaches for Facial Expression Recognition in Ageing Adults [J]. Journal of Computer Science and Technology, 2020, 35(5): 1127-1146. |
[12] | Nuo Qun, Hang Yan, Xi-Peng Qiu, Xuan-Jing Huang. Chinese Word Segmentation via BiLSTM+Semi-CRF with Relay Node [J]. Journal of Computer Science and Technology, 2020, 35(5): 1115-1126. |
[13] | Ying Li, Jia-Jie Xu, Peng-Peng Zhao, Jun-Hua Fang, Wei Chen, Lei Zhao. ATLRec: An Attentional Adversarial Transfer Learning Network for Cross-Domain Recommendation [J]. Journal of Computer Science and Technology, 2020, 35(4): 794-808. |
[14] | Dun Liang, Yuan-Chen Guo, Shao-Kui Zhang, Tai-Jiang Mu, Xiaolei Huang. Lane Detection: A Survey with New Results [J]. Journal of Computer Science and Technology, 2020, 35(3): 493-505. |
[15] | Zheng Zeng, Lu Wang, Bei-Bei Wang, Chun-Meng Kang, Yan-Ning Xu. Denoising Stochastic Progressive Photon Mapping Renderings Using a Multi-Residual Network [J]. Journal of Computer Science and Technology, 2020, 35(3): 506-521. |
|