|
Journal of Computer Science and Technology ›› 2022, Vol. 37 ›› Issue (2): 330-343.doi: 10.1007/s11390-020-0679-8
Special Issue: Artificial Intelligence and Pattern Recognition
• Artificial Intelligence and Pattern Recognition • Previous Articles Next Articles
Xin Zhang1 (张鑫), Siyuan Lu2 (陆思源), Shui-Hua Wang3,4 (王水花), Xiang Yu2 (余翔), Su-Jing Wang5,6 (王甦菁), Lun Yao7 (姚仑), Yi Pan8 (潘毅), and Yu-Dong Zhang2,9,* (张煜东)
[1] Wang C, Horby P W, Hayden F G, Gao G F. A novel coronavirus outbreak of global health concern. The Lancet, 2020, 395(10223): 470-473. DOI: 10.1016/S0140-6736(20)30185-9. [2] Wang D, Hu B, Hu C et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 2020, 323(11): 1061-1069. DOI: 10.1001/jama.2020.1585. [3] Lu Z, Lu S Y, Liu G et al. A pathological brain detection system based on radial basis function neural network. Journal of Medical Imaging and Health Informatics, 2016, 6(5): 1218-1222. DOI: 10.1166/jmihi.2016.1901. [4] Yang J, Qiu X, Shi J P et al. A pathological brain detection system based on kernel based ELM. Multimedia Tools and Applications, 2018, 77(3): 3715-3728. DOI: 10.1007/s11042-016-3559-z. [5] Lu S, Qiu X, Shi J P et al. A pathological brain detection system based on extreme learning machine optimized by bat algorithm. CNS & Neurological Disorders-Drug Targets, 2017, 16(1): 23-29. DOI: 10.2174/1871527315666161019153259. [6] Wang S H, Li P, Chen P et al. Pathological brain detection via wavelet packet Tsallis entropy and real-coded biogeography-based optimization. Fundamenta Informaticae, 2017, 151(1/2/3/4): 275-291. DOI: 10.3233/FI-2017-1492. [7] Jiang X, Zhang Y. Chinese sign language fingerspelling recognition via six-layer convolutional neural network with leaky rectified linear units for therapy and rehabilitation. Journal of Medical Imaging and Health Informatics, 2019, 9(9): 2031-2038. DOI: 10.1166/jmihi.2019.2804. [8] Szegedy C, Liu W, Jia Y et al. Going deeper with convolutions. In Proc. the 2015 IEEE Conference on Computer Vision and Pattern Recognition, June 2015, pp.1-9. DOI: 10.1109/CVPR.2015.7298594. [9] Yu X, Wang S H. Abnormality diagnosis in mammograms by transfer learning based on ResNet18. Fundamenta Informaticae, 2019, 168(2/3/4): 219-230. DOI: 10.3233/FI-2019-1829. [10] Zhang Y D, Satapathy S C, Zhu L Y et al. A seven-layer convolutional neural network for chest CT based COVID-19 diagnosis using stochastic pooling. IEEE Sensors Journal. DOI: 10.1109/JSEN.2020.3025855. [11] Wu S, Wu X, Zhang Yet al. Diagnosis of COVID-19 by wavelet renyi entropy and three-segment biogeography-based optimization. International Journal of Computational Intelligence Systems, 2020, 13(1): 1332-1344. DOI: 10.2991/ijcis.d.200828.001. [10] Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238. DOI: 10.1109/TPAMI.2005.159. [11] Chung M, Bernheim A, Mei X et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology, 2020, 295(1): 202-207. DOI: 10.1148/radiol.2020200230. [12] Maghdid H S, Ghafoor K Z, Sadiq A S et al. A novel AI-enabled framework to diagnose coronavirus COVID 19 using smartphone embedded sensors: Design study. arXiv:2003.07434, 2020. https://arxiv.org/abs/2003.07434, Dec. 2020. [13] Wang L, Wong A. COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest radiography images. arXiv:2003.09871, 2020. https://arxiv.org/abs/2003.09871, Dec. 2020. [14] Al-Karawi D, Al-Zaidi S, Polus N, Jassim S. Machine learning analysis of chest CT scan images as a complementary digital test of coronavirus (COVID-19) patients. medRxiv. DOI: 10.1101/2020.04.13.20063479. [15] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In Proc. the 25th International Conference on Neural Information Processing Systems, December 2012, pp.1097-1105. DOI: 10.1145/3065386. [18] Shakarami A, Tarrah H, Mahdavi-Hormat A. A CAD system for diagnosing Alzheimer's disease using 2D slices and an improved AlexNet-SVM method. Optik, 2020, 212: Article No. 164237. DOI: 10.1016/j.ijleo.2020.164237. [19] Wang R, Xu J, Han T X. Object instance detection with pruned Alexnet and extended training data. Signal Processing: Image Communication, 2019, 70: 145-156. DOI: 10.1016/j.image.2018.09.013. [16] Szymak P, Gasiorowski M. Using pretrained AlexNet deep learning neural network for recognition of underwater objects. Na\v{s}e More, 2020, 67(1): 9-13. DOI: 10.17818/NM/2020/1.2. [17] Guo C J, Xu Y L, Tian Z. Inversion of PM2.5 atmospheric refractivity profile based on AlexNet model from the perspective of electromagnetic wave propagation. Environmental Science and Pollution Research, 2020, 27(30): 37333-37346. DOI: 10.1007/s11356-020-07703-w. [18] Zhao X Y, Dong C Y, Zhou P, Zhu M J, Ren J W, Chen X Y. Detecting surface defects of wind tubine blades using an Alexnet deep learning algorithm. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2019, E102A(12): 1817-1824. DOI: 10.1587/transfun.E102.A.1817. [19] Xiao L, Yan Q, Deng S. Scene classification with improved AlexNet model. In Proc. the 12th International Conference on Intelligent Systems and Knowledge Engineering, Nov. 2017. DOI: 10.1109/ISKE.2017.8258820. [20] Rakitianskaia A, Engelbrecht A. Measuring saturation in neural networks. In Proc. the 2015 IEEE Symposium Series on Computational Intelligence, Dec. 2015, pp.1423-1430. DOI: 10.1109/SSCI.2015.202. [21] Gertych A, Swiderska-Chadaj Z, Ma Z et al. Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides. Sci. Rep., 2019, 9(1): Article No. 1483. DOI: 10.1038/s41598-018-37638-9. [22] Fukae J, Isobe M, Hattori T et al. Convolutional neural network for classification of two-dimensional array images generated from clinical information may support diagnosis of rheumatoid arthritis. Sci. Rep., 2020, 10(1): Article No. 5648. DOI: 10.1038/s41598-020-62634-3. [23] Nguyen H D, Lloyd-Jones L R, McLachlan G J. A universal approximation theorem for mixture-of-experts models. Neural Computation, 2016, 28(12): 2585-2593. DOI: 10.1162/NECO_a_00892. [24] Huang Y, Yang D, Wang K, Wang L, Fan J. A quality diagnosis method of GMAW based on improved empirical mode decomposition and extreme learning machine. Journal of Manufacturing Processes, 2020, 54: 120-128. DOI: 10.1016/j.jmapro.2020.03.006. [25] Schmidt W F, Kraaijveld M A, Duin R P W. Feedforward neural networks with random weights. In Proc. the 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference B: Pattern Recognition Methodology and Systems, Aug. 30-Sept. 3, 1992. DOI: 10.1109/ICPR.1992.201708. [26] Pao Y H, Park G H, Sobajic D J. Learning and generalization characteristics of the random vector functional-link net. Neurocomputing, 1994, 6(2): 163-180. DOI: 10.1016/0925-2312(94)90053-1. [27] Kushwah G S, Ranga V. Voting extreme learning machine based distributed denial of service attack detection in cloud computing. Journal of Information Security and Applications, 2020, 53: Article No. 102532. DOI: 10.1016/j.jisa.2020.102532. [28] Yager R R, Kreinovich V. Universal approximation theorem for uninorm-based fuzzy systems modeling. Fuzzy Sets and Systems, 2003, 140(2): 331-339. DOI: 10.1016/S0165-0114(02)00521-3. [29] Scardapane S, Fierimonte R, Wang D H, Panella M, Uncini A. Distributed music classification using random vector functional-link nets. In Proc. the 2015 International Joint Conference on Neural Networks, July 2015. DOI: 10.1109/IJCNN.2015.7280333. [30] Chaudhuri A. The minimization of empirical risk through stochastic gradient descent with momentum algorithms. In Proc. the 8th Computer Science On-line Conference on Artificial Intelligence Methods in Intelligent Algorithms, April 2019, pp.168-181. DOI: 10.1007/978-3-030-19810-7_17. [31] Dean J, Corrado G, Monga R et al. Large scale distributed deep networks. In Proc. the 25th International Conference on Neural Information Processing Systems, December 2012, pp.1223-1231. [32] Rajaraman S, Candemir S, Kim I, Thoma G, Antani S. Visualization and interpretation of convolutional neural network predictions in detecting pneumonia in pediatric chest radiographs. Applied Sciences, 2018, 8(10): Article No. 1715. DOI: 10.3390/app8101715. [33] Ardila D, Kiraly A P, Bharadwaj S et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature Medicine, 2019, 25(6): 954-961. DOI: 10.1038/s41591-019-0447-x. [34] Chae K J, Jin G Y, Ko S B, Wang Y, Zhang H, Choi E J, Choi H. Deep learning for the classification of small (≤2 cm) pulmonary nodules on CT imaging: A preliminary study. Acad. Radiol., 2020, 27(4): e55-e63. DOI: 10.1016/j.acra.2019.05.018. [35] Koo H J, Lim S, Choe J, Choi S H, Sung H, Do K H. Radiographic and CT features of viral pneumonia. RadioGraphics, 2018, 38(3): 719-739. DOI: 10.1148/rg.2018170048. |
[1] | Shao-Jie Qiao, Guo-Ping Yang, Nan Han, Hao Chen, Fa-Liang Huang, Kun Yue, Yu-Gen Yi, Chang-An Yuan. Cardinality Estimator: Processing SQL with a Vertical Scanning Convolutional Neural Network [J]. Journal of Computer Science and Technology, 2021, 36(4): 762-777. |
[2] | Songjie Niu, Shimin Chen. TransGPerf: Exploiting Transfer Learning for Modeling Distributed Graph Computation Performance [J]. Journal of Computer Science and Technology, 2021, 36(4): 778-791. |
[3] | Lan Chen, Juntao Ye, Xiaopeng Zhang. Multi-Feature Super-Resolution Network for Cloth Wrinkle Synthesis [J]. Journal of Computer Science and Technology, 2021, 36(3): 478-493. |
[4] | Yang Liu, Ruili He, Xiaoqian Lv, Wei Wang, Xin Sun, Shengping Zhang. Is It Easy to Recognize Baby's Age and Gender? [J]. Journal of Computer Science and Technology, 2021, 36(3): 508-519. |
[5] | Yu-Jie Yuan, Yukun Lai, Tong Wu, Lin Gao, Li-Gang Liu. A Revisit of Shape Editing Techniques: From the Geometric to the Neural Viewpoint [J]. Journal of Computer Science and Technology, 2021, 36(3): 520-554. |
[6] | Sheng-Luan Hou, Xi-Kun Huang, Chao-Qun Fei, Shu-Han Zhang, Yang-Yang Li, Qi-Lin Sun, Chuan-Qing Wang. A Survey of Text Summarization Approaches Based on Deep Learning [J]. Journal of Computer Science and Technology, 2021, 36(3): 633-663. |
[7] | Wei Du, Yu Sun, Hui-Min Bao, Liang Chen, Ying Li, Yan-Chun Liang. DeepHBSP: A Deep Learning Framework for Predicting Human Blood-Secretory Proteins Using Transfer Learning [J]. Journal of Computer Science and Technology, 2021, 36(2): 234-247. |
[8] | Jun Gao, Paul Liu, Guang-Di Liu, Le Zhang. Robust Needle Localization and Enhancement Algorithm for Ultrasound by Deep Learning and Beam Steering Methods [J]. Journal of Computer Science and Technology, 2021, 36(2): 334-346. |
[9] | Hua Chen, Juan Liu, Qing-Man Wen, Zhi-Qun Zuo, Jia-Sheng Liu, Jing Feng, Bao-Chuan Pang, Di Xiao. CytoBrain: Cervical Cancer Screening System Based on Deep Learning Technology [J]. Journal of Computer Science and Technology, 2021, 36(2): 347-360. |
[10] | Zhang-Jin Huang, Xiang-Xiang He, Fang-Jun Wang, Qing Shen. A Real-Time Multi-Stage Architecture for Pose Estimation of Zebrafish Head with Convolutional Neural Networks [J]. Journal of Computer Science and Technology, 2021, 36(2): 434-444. |
[11] | Nuo Qun, Hang Yan, Xi-Peng Qiu, Xuan-Jing Huang. Chinese Word Segmentation via BiLSTM+Semi-CRF with Relay Node [J]. Journal of Computer Science and Technology, 2020, 35(5): 1115-1126. |
[12] | Andrea Caroppo, Alessandro Leone, Pietro Siciliano. Comparison Between Deep Learning Models and Traditional Machine Learning Approaches for Facial Expression Recognition in Ageing Adults [J]. Journal of Computer Science and Technology, 2020, 35(5): 1127-1146. |
[13] | Dun Liang, Yuan-Chen Guo, Shao-Kui Zhang, Tai-Jiang Mu, Xiaolei Huang. Lane Detection: A Survey with New Results [J]. Journal of Computer Science and Technology, 2020, 35(3): 493-505. |
[14] | Zheng Zeng, Lu Wang, Bei-Bei Wang, Chun-Meng Kang, Yan-Ning Xu. Denoising Stochastic Progressive Photon Mapping Renderings Using a Multi-Residual Network [J]. Journal of Computer Science and Technology, 2020, 35(3): 506-521. |
[15] | Rui-Song Zhang, Wei-Ze Quan, Lu-Bin Fan, Li-Ming Hu, Dong-Ming Yan. Distinguishing Computer-Generated Images from Natural Images Using Channel and Pixel Correlation [J]. Journal of Computer Science and Technology, 2020, 35(3): 592-602. |
|
|