|
Journal of Computer Science and Technology ›› 2022, Vol. 37 ›› Issue (2): 369-388.doi: 10.1007/s11390-020-0193-z
Special Issue: Computer Networks and Distributed Computing; Theory and Algorithms
• Computer Networks and Distributed Computing • Previous Articles Next Articles
William Croft1, Jörg-Rüdiger Sack1, and Wei Shi2
[1] Dwork C. Differential privacy. In Proc. the 33rd International Colloquium on Automata, Languages and Programming, July 2006, pp.1-12. DOI: 10.1007/11787006_1. [2] Ghosh A, Roughgarden T, Sundararajan M. Universally utility-maximizing privacy mechanisms. SIAM Journal on Computing, 2012, 41(6): 1673-1693. DOI: 10.1137/09076828X. [3] McSherry F, Talwar K. Mechanism design via differential privacy. In Proc. the 48th Annual IEEE Symposium on Foundations of Computer Science, October 2007, pp.94-103. DOI: 10.1109/FOCS.2007.66. [4] Liu F. Statistical properties of sanitized results from differentially private Laplace mechanism with bounding constraints. arXiv:1607.08554, 2018. https://arxiv.org/abs/1607.08554, Dec. 2021. [5] Adam N R, Worthmann J C. Security-control methods for statistical databases: A comparative study. ACM Computing Surveys, 1989, 21(4): 515-556. DOI: 10.1145/76894.76895. [6] Dwork C, Roth A. The algorithmic foundations of differential privacy. Foundations and Trends® in Theoretical Computer Science, 2014, 9(3/4): 211-407. DOI: 10.1561/0400000042. [7] Dwork C. Differential privacy: A survey of results. In Proc. the 5th International Conference on Theory and Applications of Models of Computation, April 2008, pp.1-19. DOI: 10.1007/978-3-540-79228-4_1. [8] Nguyen H H, Kim J, Kim Y. Differential privacy in practice. Journal of Computing Science and Engineering, 2013, 7(3): 177-186. DOI: 10.5626/JCSE.2013.7.3.177. [9] Barak B, Chaudhuri K, Dwork C, Kale S, McSherry F, Talwar K. Privacy, accuracy, and consistency too: A holistic solution to contingency table release. In Proc. the 26th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 2007, pp.273-282. DOI: 10.1145/1265530.1265569. [10] Hay M, Rastogi V, Miklau G, Suciu D. Boosting the accuracy of differentially private histograms through consistency. Proceedings of the Very Large Data Base Endowment, 2010, 3(1/2): 1021-1032. DOI: 10.14778/1920841.1920970. [11] Lee J, Wang Y, Kifer D. Maximum likelihood postprocessing for differential privacy under consistency constraints. In Proc. the 21st ACM International Conference on Knowledge Discovery and Data Mining, August 2015, pp.635-644. DOI: 10.1145/2783258.2783366. [12] Gupte M, Sundararajan M. Universally optimal privacy mechanisms for minimax agents. In Proc. the 29th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 2010, pp.135-145. DOI: 10.1145/1807085.1807105. [13] Cormode G, Kulkarni T, Srivastava D. Constrained private mechanisms for count data. In Proc. the 34th IEEE International Conference on Data Engineering, April 2018, pp.845-856. DOI: 10.1109/ICDE.2018.00081. [14] Holohan N, Antonatos S, Braghin S, Aonghusa P M. The bounded Laplace mechanism in differential privacy. Journal of Privacy and Confidentiality, 2019, 10(1): Article No. 1. DOI: 10.29012/jpc.715. [15] Geng Q, Ding W, Guo R, Kumar S. d Laplacian mechanism for approximate differential privacy. arXiv:1810.00877v1, 2018. https://arxiv.org/abs/1810.00877v1, Dec. 2021. [16] Awan J, Slavkovic A. Differentially private uniformly most powerful tests for binomial data. In Proc. the 31st Annual Conference on Neural Information Processing Systems, December 2018, pp.4208-4218. [17] Corless R, Gonnet G, Hare D, Jeffrey D, Knuth D. On the Lambert W function. Advances in Computational Mathematics, 1996, 5(1): 329-359. DOI: 10.1007/BF02124750. [18] Mitchell T. Generative and discriminative classifiers: Naive Bayes and logistic regression. In Machine Learning, Mitchell T (ed.), McGraw Hill, 2017, pp.1-17. [19] Vaidya J, Shafiq B, Basu A, Hong Y. Differentially private Naive Bayes classification. In Proc. the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies, November 2013, pp.571-576. DOI: 10.1109/WI-IAT.2013.80. |
[1] | Jian-Zhe Zhao, Xing-Wei Wang, Ke-Ming Mao, Chen-Xi Huang, Yu-Kai Su, and Yu-Chen Li. Correlated Differential Privacy of Multiparty Data Release in Machine Learning [J]. Journal of Computer Science and Technology, 2022, 37(1): 231-251. |
[2] | Xiang Chen, Dun Zhang, Zhan-Qi Cui, Qing Gu, Xiao-Lin Ju. DP-Share: Privacy-Preserving Software Defect Prediction Model Sharing Through Differential Privacy [J]. Journal of Computer Science and Technology, 2019, 34(5): 1020-1038. |
[3] | Ning Wang, Yu Gu, Jia Xu, Fang-Fang Li, Ge Yu. Differentially Private Event Histogram Publication on Sequences over Graphs [J]. , 2017, 32(5): 1008-1024. |
|
|