Special Issue: Artificial Intelligence and Pattern Recognition

• Articles • Previous Articles     Next Articles

Illumination Invariant Recognition of Three-Dimensional Texture in Color Images

Jie Yang1 and Mohammed Al-Rawi2   

  1. 1Image Processing and Pattern Recognition Institute, Shanghai Jiaotong University, Shanghai 200030, P.R. China
    2Computer Science Department, King Abdullah the Second School for Information Technology, Jordan University, Jordan
  • Received:2004-03-26 Revised:2004-10-20 Online:2005-05-10 Published:2005-05-10

In this paper, illumination-affine invariant methods are presentedbased on affinemoment normalization techniques, Zernike moments, and multibandcorrelation functions. The methods are suitable for the illuminationinvariant recognition of 3D color texture. Complex valued moments (I.e.,Zernike moments) and affine moment normalization are used in thederivation of illumination affine invariants where the real valuedaffine moment invariants fail to provide affine invariants that areindependent of illumination changes. Three different momentnormalization methods have been used, two of which are based on affinemoment normalization technique and the third is based on reducing theaffine transformation to a Euclidian transform. It is shown that for achange of illumination and orientation, the affinely normalized Zernikemoment matrices are related by a linear transform. Experimental resultsare obtained in two tests: the first is used with textures ofoutdoor scenes while the second is performed on the well-knownCUReT texture database. Both tests show high recognition efficiency of the proposed recognition methods.

Key words: Conceptual level; query language; semantics; logic; entityrelationship model; abstraction level; ER calculus;

[1] Healey G, Wang L. Illumination-invariant recognition of texture incolor images. J. Opt. Soc. Amer. A, 1995, 12(9): 1877--1883.

[2] Kondepudy R, Healey G. Use of invariants for recognition ofthree-dimensional color texture. J. Opt. Soc. Amer. A, 1994,11: 3037--3049.

[3] Wang L, Healey G. Using Zernike moments for the illumination andgeometry invariant classification of multispectral texture. IEEETrans. Image Processing, 1998, 7(2): 196--203.

[4] Jain A K, Farrokhnia F. Unsupervised texture segmentation usingGabor filters. Pattern Recognition, 1991, 24(12): 1167--1186.

[5] Cross G, Jain A K. Markov random field texture models. IEEETrans. PAMI, 1983, 5(1): 25--39.

[6] Panjwani D, Healey G. Selecting neighbors in random field modelsfor color images. IEEE Int. Conf. Image Processing,Austin, TX, 1994, 2, pp.56--60.

[7] Jain A, Healey G. A multiscale representation including opponentcolor feature for texture recognition. IEEE Trans. ImageProcessing, 1998, 17(1): 124--128.

[8] Suen P-H, Healey G. The analysis and recognition of real-worldtextures in three dimensions. IEEE Trans. PAMI, 2000, 22(5): 491--503.

[9] Ren H, Ping Z, Bo W, Wu W, Sheng Y. Multidistortion-invariant imagerecognition with radial harmonic Fourier moments. J. Opt. Soc.Amer. A, 2003, 20(4): 631--637.

[10] Rosenfield A, Kak A C. Digital Picture Processing. Seconded., New York: Academic Press, 1982.

[11] Hu M K, Visual pattern recognition by moment invariants. IRETrans. Inform. Theory, February 1962, IT-8: 179--187.

[12] Teague M R. Image analysis via the general theory of moments. J. Opt. Soc. Amer., 1980, 70: 920--930.

[13] Flusser J, Suk T. Pattern recognition by affine moment invariants. Pattern Recognition, 1993, 26: 877--882.

[14] Taubin G, Cooper D B. Object Recognition Based on Moment (orAlgebraic) Invariants. -Geometric Invariance in ComputerVision, Mundy J L, Zisserman A (eds.), MIT Press, Cambridge, Mass.,1992, pp.375--497.

[15] Rothe I, Susse H, Voss K. The method of normalization to determineinvariants. IEEE Trans. PAMI, 1996, 18(4): 366--375.

[16] Maloney L. Evaluation of linear models of surface spectralreflectance with small number of parameters. J. Opt.Soc. Amer. A, 1986, 3: 1673--1683.

[17] Maloney L, Wandell B. Color constancy, a method for recoveringsurface spectral reflectance. J. Opt. Soc. Amer. A, 1986, 3:29--33.

[18] Bill M. A device performing illuminant-invariant assessment ofchromatic relations. J. Theoretical Biology, 1978, 71(8): 473--478.

[19] Buchsbaum G. A spatial processor model for object colorperception. Journal of Franklin Inst., 1980, 310(1): 1--26.

[20] Al-Rawi M, Yang J. Practical fast computation of Zernike moments. Journal of Computer Science and Technology, 2002, 17(2): 181--188.

[21] The C-H, Chin R T. On image analysis by moment invariants. IEEE Trans. PAMI, 1988, 10(4): 496--513.

[22] Mukandan R, Ramakrishnan K R. Fast computation of Legendre andZernike moments. Pattern Recognition, 1995, 28(9): 1433--1442.

[23] Khotanzad A, Hong Y C. Invariant image recognition by Zernikemoments, IEEE Trans. PAMI, 1990, 12(5): 489--497.

[24] Bailey R R, Srinath M. Orthogonal moment features for use withparametric and non-parametric classifiers. IEEE Trans. PAMI, 1996,18(4): 389--399.

[25] Markandey V, deFigueriedo J P. Robot sensing techniques based onhigh-dimensional moment invariants and tensors. IEEE Trans.Robotics and Automation, 1992, 8(2): 186--194.

[26] Wallin A, Kubler O. Complete sets of Zernike moment invariants and the role of pseudo-invariants, IEEE Trans. PAMI, 1995, 17(11):1106--1110.

[27] Sheng Y, Shen L. Orthogonal Fourier-Mellin moments for invariantpattern recognition. J. Opt. Soc. Amer. A, 1994, 11(6): 1748--1757.

[28] Verrall S C, Kakarala R. Disk-harmonic coefficients for invariantpattern recognition. J. Opt. Soc. Amer. A, 1998, 15(2): 389--403.

[29] Shen D, Horace H S. Discriminative wavelet shape descriptors forrecognition of 2D patterns. Pattern Recognition, 1999, 32: 151--165.

[30] Gloub G H, van Loan C F. Matrix Computations. Baltimore:Johns Hopkins Univ. Press, 1983.

[31] Press W H, Teukolsky S A, Vetterling W T, Flannery B P. NumericalRecipes in C: The Art of Scientific Computing. Cambridge UniversityPress, second edition, 1992.

[32] Dana K J, van Ginneken B, Nayar S K, Koenderink J J. Reflectanceand texture of real world surfaces. ACM Trans. Graphics,1999, 18(1): 1--34.
[1] Inès Mouakher, Fatma Dhaou, and J. Christian Attiogbé. Event-Based Semantics of UML 2.X Concurrent Sequence Diagrams for Formal Verification [J]. Journal of Computer Science and Technology, 2022, 37(1): 4-28.
[2] Li-Li Xiao, Hui-Biao Zhu, Qi-Wen Xu. Trace Semantics and Algebraic Laws for Total Store Order Memory Model [J]. Journal of Computer Science and Technology, 2021, 36(6): 1269-1290.
[3] Ke Liu, Jing-Yi Wang, Qiang Wei, Zhen-Yong Zhang, Jun Sun, Rong-Kuan Ma, Rui-Long Deng. HRPDF: A Software-Based Heterogeneous Redundant Proactive Defense Framework for Programmable Logic Controller [J]. Journal of Computer Science and Technology, 2021, 36(6): 1307-1324.
[4] Zhao-Hui Li, Xin-Yu Feng. Verifying Contextual Refinement with Ownership Transfer [J]. Journal of Computer Science and Technology, 2021, 36(6): 1342-1366.
[5] Yi Zhong, Jian-Hua Feng, Xiao-Xin Cui, Xiao-Le Cui. Machine Learning Aided Key-Guessing Attack Paradigm Against Logic Block Encryption [J]. Journal of Computer Science and Technology, 2021, 36(5): 1102-1117.
[6] Paul Marillonnet, Maryline Laurent, Mikaël Ates. Personal Information Self-Management: A Survey of Technologies Supporting Administrative Services [J]. Journal of Computer Science and Technology, 2021, 36(3): 664-692.
[7] Wan-Wei Liu, Fu Song, Tang-Hao-Ran Zhang, Ji Wang. Verifying ReLU Neural Networks from a Model Checking Perspective [J]. Journal of Computer Science and Technology, 2020, 35(6): 1365-1381.
[8] Hong-Cheu Liu, Jixue Liu. On the Expressive Power of Logics on Constraint Databases with Complex Objects [J]. Journal of Computer Science and Technology, 2019, 34(4): 795-817.
[9] Lin Wu, Min Li, Jian-Xin Wang, Fang-Xiang Wu. Controllability and Its Applications to Biological Networks [J]. Journal of Computer Science and Technology, 2019, 34(1): 16-34.
[10] Rim Mahouachi. Search-Based Cost-Effective Software Remodularization [J]. Journal of Computer Science and Technology, 2018, 33(6): 1320-1336.
[11] Pei-Feng Li, Guo-Dong Zhou. Three-Layer Joint Modeling of Chinese Trigger Extraction with Constraints on Trigger and Argument Semantics [J]. , 2017, 32(5): 1044-1056.
[12] Chen-Chen Sun, De-Rong Shen, Yue Kou, Tie-Zheng Nie, Ge Yu. Topological Features Based Entity Disambiguation [J]. , 2016, 31(5): 1053-1068.
[13] Yang Liu, Xuan-Dong Li, Yan Ma. A Game-Based Approach for PCTL* Stochastic Model Checking with Evidence [J]. , 2016, 31(1): 198-216.
[14] Yun-Zhi Zhuge, Hu-Chuan Lu. Robust Video Text Detection with Morphological Filtering Enhanced MSER [J]. , 2015, 30(2): 353-363.
[15] Zhao-Peng Li, Yu Zhang, and Yi-Yun Chen. A Shape Graph Logic and A Shape System [J]. , 2013, 28(6): 1063-1084.
Full text



[1] Li Jintao; Min Yinghua;. Product-Oriented Test-Pattern Generation for Programmable Logic Arrays[J]. , 1990, 5(2): 164 -174 .
[2] Zheng Fang; Wu Wenhu; Fang Ditang;. Center-Distance Continuous Probability Models and the Distance Measure[J]. , 1998, 13(5): 426 -437 .
[3] Hua-Ping Zhang, Jian Sun, Bing Wang, and Shuo Bai. Computation on Sentence Semantic Distance for Novelty Detection[J]. , 2005, 20(3): 331 -337 .
[4] Peter M. Haverty, Zhi-Ping Weng, and Ulla Hansen. Transcriptional Regulatory Networks Activated by PI3K and ERK Transduced Growth Signals in Human Glioblastoma Cells[J]. , 2005, 20(4): 439 -445 .
[5] Manas Ranjan Kabat, Manoj Kumar Patel, and Chita Ranjan Tripathy. A Heuristic Algorithm for Core Selection in Multicast Routing[J]. , 2011, 26(6): 954 -961 .
[6] Tao Jiang, Rui Hou, Jian-Bo Dong, Lin Chai, Sally A. McKee, Bin Tian, Li-Xin Zhang, Ning-Hui Sun. Adapting Memory Hierarchies for Emerging Datacenter Interconnects[J]. , 2015, 30(1): 97 -109 .
[7] Rong Wang, Yan Zhu, Tung-Shou Chen, Chin-Chen Chang. Privacy-Preserving Algorithms for Multiple Sensitive Attributes Satisfying t-Closeness[J]. Journal of Computer Science and Technology, 2018, 33(6): 1231 -1242 .
[8] Yang Hong, Yang Zheng, Fan Yang, Bin-Yu Zang, Hai-Bing Guan, Hai-Bo Chen. Scaling out NUMA-Aware Applications with RDMA-Based Distributed Shared Memory[J]. Journal of Computer Science and Technology, 2019, 34(1): 94 -112 .
[9] Tong Chen, Ji-Qiang Liu, He Li, Shuo-Ru Wang, Wen-Jia Niu, En-Dong Tong, Liang Chang, Qi Alfred Chen, Gang Li. Robustness Assessment of Asynchronous Advantage Actor-Critic Based on Dynamic Skewness and Sparseness Computation: A Parallel Computing View[J]. Journal of Computer Science and Technology, 2021, 36(5): 1002 -1021 .

ISSN 1000-9000(Print)

CN 11-2296/TP

Editorial Board
Author Guidelines
Journal of Computer Science and Technology
Institute of Computing Technology, Chinese Academy of Sciences
P.O. Box 2704, Beijing 100190 P.R. China
E-mail: jcst@ict.ac.cn
  Copyright ©2015 JCST, All Rights Reserved