[1] Aggarwal C, Han J, Wang J, Yu P. A framework for ondemand classification of evolving data streams. May 2006, 18(5): 577-589. [2] Alsabti K, Ranka S, Singh V. CLOUDS: A decision tree classifier for large datasets. In Proc. KDD, New York, USA, Aug. 27-31, 1998, pp.2-8. [3] Breiman L, Friedman J, Olshen R A, Stone C J. Classification and Regression Trees. Chapman & Hall, 1984. [4] Brodley C E, Utgoff P E. Multivariate decision trees. Machine Learning, 1995, 19(1): 45-77. [5] Breslow L, Aha D. Simplifying decision trees. Knowledge Engineering Review, 1997, 12(1): 1-40. [6] Duda R, Hart P, Stork D. Pattern Classification. 2nd Edition, New York: John Wiley and Sons Inc., 2001. [7] Friedman J H. A recursive partitioning decision rule for nonparametric classifiers. IEEE Transactions on Computers, 1977, 26(4): 404-408. [8] Gehrke J, Ganti V, Ramakrishnan R, Loh W Y. BOAT: Optimistic decision tree construction. In Proc. ACM SIGMOD Int. Conf. Management of Data, Philadelphia, USA, May 31-June 3, 1999, pp.169-180. [9] James M. Classification Algorithms. Wiley, 1985. [10] Quinlan J R. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993. [11] Smyth P, Gray A, Fayyad U M. Retrofitting decision tree classifiers using kernel density estimation. In Proc. the International Conference on Machine Learning, Taheo City, USA, July 9-12, 1995, pp.506-514. [12] Achtert E, Kriegel H P, KrÄoger P, Renz M, ZÄufle A. Reverse k-nearest neighbor search in dynamic and general metric databases. In Proc. EDBT, Saint Petersburg, Russia, Mar. 24-26, 2009, pp.886-897. [13] Tao Y, Yiu M L, Mamoulis N. Reverse nearest neighbor search in metric spaces. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(9): 1239-1252. [14] Kaelbling L, Littman M, Moore A. Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 1996, 4: 237-285. [15] Sutton R, Barto A. Re-Inforcement Learning: An Introduction. MIT Press, Cambridge, MA, 1988. [16] Hettich S, Blake C, Merz C. UCI repository of machine learning databases. Department of Information and Computer Science, University of California, Irvine, 1998, http://archive.ics.uci.edu/ml. [17] Witten I, Frank E. Data Mining: Practical Machine Learning Tools with Java Implementations. San Francisco: Morgan Kaufmann Publishers, CA, 2000, http://www.cs.waikato.ac.nz/»ml/weka/book.html. [18] Kohavi R. The power of decision tables. In Proc. European Conference on Machine Learning, Crete, Greece, Apr. 25-27, 1995, pp.174-189. |