[1] Li S, Guan Z, Tang L, Chen Z. Exploiting consumer reviewsfor product feature ranking. In Proc. the 3rd Workshop onSocial Web Search and Mining (SWSM2011), Beijing, China,July 28, 2011, Article No.13.[2] Li S, Hao J, Chen Z. Graph-based service quality evaluationthrough mining Web reviews. In Proc. the 2010 NLP-KE,Beijing, China, Aug. 21-23, 2010, pp.280-287.[3] Li S, Chen Z. Exploiting web reviews for generating customerservice surveys. In Proc. the 2nd International Workshopon Search and Mining User-Generated Contents, Toronto,Canada, Oct. 26-30, 2010, pp.53-62.[4] Zhang L, Liu B, Lim S H, O'Brien-Strain E. Extracting andranking product features in opinion documents. In Proc. the23rd COLING, Beijing, China, Aug. 23-27, 2010, pp.1462-1470.[5] Qiu G, Liu B, Bu J, Chen C. Expanding domain sentimentlexicon through double propagation. In Proc. the 21st In-ternational Joint Conference on Artificial Intelligence, SanFrancisco, USA, July 11-17, 2009, pp.1199-1204.[6] Liu B. Web Data Mining: Exploring Hyper-Links, Contents,and Usage Data. Springer Press, 2006, pp.411-449.[7] Wilson T, Wiebe J, Hoffmann P. Recognizing contextual po-larity in phrase-level sentiment analysis. In Proc. HLT2005,Vancouver, Canada, Oct. 6-8, 2005, pp.347-354.[8] Hastie T, Tibshirani R, Friedman J H. The Elements of Sta-tistical Learning. New York: Springer New York, 2001.[9] Brin S, Page L. The anatomy of a large-scale hypertextualWeb search engine. Comput. Netw. ISDN Syst., 1998, 30(1-7): 107-117.[10] Golub G H, van V L C F. Matrix Computations. The JohnsHopkins University Press, 1983.[11] Hu M, Liu B. Mining and summarizing customer reviews. InProc. the 10th KDD, Seattle, USA, Aug. 22-25, 2004, pp.168-177.[12] Kleinberg J M. Authoritative sources in a hyperlinked envi-ronment. J. ACM, 1999, 46(5): 604-632.[13] Parasuraman A, Zeithaml V A, Berry L L. SERVQUAL:A multiple-item scale for measuring consumer perceptions.Journal of Retailing, 1988, 64(1): 12-40.[14] Parasuraman A, Zeithaml V A, Berry L L. A conceptualmodel of service quality and its implications for future re-search. Journal of Marketing, 1985, 49(4): 41-50.[15] Landrum H, Prybutok V, Zhang X, Peak D. Measuring ISsystem service quality with SERVQUAL: Users' perceptionsof relative importance of the five SERVPERF dimensions. In-forming Science: the International Journal of an EmergingTransdiscipline, 2009, 12:17-35.[16] Liu B, Hu M, Cheng J. Opinion observer: Analyzing and com-paring opinions on theWeb. In Proc. the 15th WWW, Chiba,Japan, May 10-14, 2005, pp.342-351.[17] Agrawal R, Imielinski T, Swami A. Mining association rulesbetween sets of items in large databases. In Proc. SIG-MOD1993, Washington, USA, May 25-28, 1993, pp.207-216.[18] Morinaga S, Yamanishi K, Tateishi K, Fukushima T. Min-ing product reputations on the Web. In Proc. KDD2002,Edmonton, Canada, July 23-25, 2002, pp.341-349.[19] Popescu A, Etzioni O. Extracting product features and opin-ions from reviews. In Proc. HLT/EMNLP, Vancouver,Canada, Oct. 6-8, 2005, pp.339-346.[20] Su Q, Xu X, Guo H, Guo Z, Wu X, Zhang X, Swen B, SuZ. Hidden sentiment association in Chinese web opinion min-ing. In Proc. WWW2008, Beijing, China, April 21-25, 2008,pp.959-968.[21] Gamon M, Aue A, Corston-Oliver S, Ringger E K. Pulse:Mining customer opinions from free text. In Proc. IDA 2005,Madrid, Spain, Sept. 8-10, 2005, pp.121-132.[22] Pang B, Lee L. Opinion mining and sentiment analysis.Found. Trends Inf. Retr., 2008, 2(1-2): 1-135.[23] Lu Y, Zhai C, Sundaresan N. Rated aspect summarization ofshort comments. In Proc. WWW2009, Madrid, Spain, April20-24, 2009, pp.131-140.[24] Hofmann T. Unsupervised learning by probabilistic latent se-mantic analysis. Mach. Learn., 2001, 42(1-2): 177-196.[25] Li S, Hao J, Chen Z. Generating tags for service reviews.In Proc. ADMA2010, Chongqing, China, Nov. 19-21, 2010,pp.463-474.[26] Wang H, Lu Y, Zhai C. Latent aspect rating analysis onreview text data: A rating regression approach. In Proc.KDD2010, Washington, DC, USA, July 25-28, 2010, pp.783-792.[27] Yi J, Nasukawa T, Bunescu R, Niblack W. Sentiment ana-lyzer: Extracting sentiments about a given topic using nat-ural language processing techniques. In Proc. ICDM2003,Nov. 19-22, 2003, pp.427-434.[28] Mei Q, Ling X, Wondra M, Su H, Zhai C. Topic sentimentmixture: Modeling facets and opinions in weblogs. In Proc.WWW2007, Banff, Canada, May 8-12, 2007, pp.171-180.[29] Titov I, McDonald R. Modeling online reviews with multi-grain topic models. In Proc. WWW2008, Beijing, China,April 21-25, 2008, pp.111-120.[30] Hatzivassiloglou V, McKeown K R. Predicting the semanticorientation of adjectives. In Proc. the 18th EACL, Madrid,Spain, July 7-12, 1997, pp.174-181.[31] Turney P, Littman M L. Measuring praise and criticism: In-ference of semantic orientation from association. ACM Trans.Inf. Syst., 2003, 21(4): pp.315-346.[32] Lerman K, Blair-Goldensohn S, McDonald R. Sentiment sum-marization: Evaluating and learning user preferences. InProc. the 12th EACL, Athens, Greece, March 30-April 3,2009, pp.514-522.[33] Shen D, Sun J, Yang Q, Chen Z. A comparison of im-plicit and explicit links for web page classification. In Proc.WWW2006, Edinburgh, Scotland, UK, May 23-26, 2006,pp.643-650.[34] Ma H, King I, Lyu M R. Learning to recommend with ex-plicit and implicit social relations. ACM Trans. Intell. Syst.Technol., 2011, 2(3): Article No.29.[35] Wan X, Xiao J. Exploiting neighborhood knowledge for sin-gle document summarization and keyphrase extraction. ACMTrans. Inf. Syst., 2010, 28(2): Article No.8.[36] Zhai Z, Liu B, Xu H, Jia P. Clustering product features foropinion mining. In Proc. the WSDM2011, Hong Kong,China, Feb. 9-12, 2011, pp.347-354.[37] Guo H, Zhu H, Guo Z, Zhang X, Su Z. Product feature catego-rization with multilevel latent semantic association. In Proc.CIKM2009, Hong Kong, China, Nov. 2-6, 2009, pp.1087-1096. |