SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Hui-Feng Sun, Student, Jun-Liang Chen, Gang Yu, Chuan-Chang Liu, Yong Peng, Guang Chen, Bo Cheng. JacUOD: A New Similarity Measurement for Collaborative Filtering[J]. Journal of Computer Science and Technology, 2012, 27(6): 1252-1260. DOI: 10.1007/s11390-012-1301-5 |
[1] |
Balabanovic M, Shoham Y. Fab: Content-based collaborativerecommendation. Comm. ACM, 1997, 40(3): 66-72.
|
[2] |
Lang K. NewsWeeder: Learning to filter netnews. In Proc.the 12th Int. Conf. Machine Learning, Jul. 1995, pp.331-339.
|
[3] |
Mooney R J, Roy L. Content-based book recommending usinglearning for text categorization. In Proc. ACM SIGIR 1999Workshop Recommender Systems: Algorithms and Evalua-tion, Aug. 1999, pp.195-204.
|
[4] |
Pazzani M, Billsus D. Learning and revising user profiles:The identification of interesting web sites. Machine Learn-ing, 1997, 27(3): 313-331.
|
[5] |
Xue G R, Dai W Y, Yang Q, Yu Y. Topic-bridged PLSA forcross-domain text classification. In Proc. the 31st Conf. Re-search and Development in Information Retrieval, Jul. 2008,pp.627-634.
|
[6] |
Liu N N, Yang Q. EigenRank: A ranking-oriented approach tocollaborative filtering. In Proc. the 31st Conf. Research andDevelopment in Information Retrieval, Jul. 2008, pp.83-90.
|
[7] |
Breese J, Heckerman D, Kadie C. Empirical analysis of predic-tive algorithms for collaborative filtering. In Proc. the 14thInt. Conf. Uncertainty in Artificial Intelligence (UAI 1998),May 1998, pp.43-52.
|
[8] |
Liu N N, Zhao M, Yang Q. Probabilistic latent prefer-ence analysis for collaborative filtering. In Proc. the18th Int. Conf. Information and Knowledge Management(CIKM2009), Nov. 2009, pp.759-766.
|
[9] |
Xin X, King L, Deng H, Lyu M R. A social recommendationframework based on multi-scale continuous conditional ran-dom fields. In Proc. the 18th ACM Conf. Information andKnowledge Management, Nov. 2009, pp.1247-1256.
|
[10] |
Adomavicius G, Tuzhilin A. Toward the next generation ofrecommender systems: A survey of the state-of-the-art andpossible extensions. IEEE Trans. Knowledge and Data En-gineering, 2005, 17(6): 734-749.
|
[11] |
Herlocker J L, Konstan J A, Borchers A, Riedl J. An algo-rithmic framework for performing collaborative filtering. InProc. the 22nd Conf. Research and Development in Infor-mation Retrieval, Aug. 1999, pp.230-237.
|
[12] |
Jin R, Chai J Y, Si L. An automatic weighting scheme forcollaborative filtering. In Proc. the 27th Conf. Research andDevelopment in Information Retrieval, Jul. 2004, pp.337-344.
|
[13] |
Zhao Z, Shang M. User-based collaborative-filtering recom-mendation algorithms on Hadoop. In Proc. the 3rd Int.Conf. Knowledge Discovery and Data Mining, Jan. 2010,pp478-481.
|
[14] |
Deshpande M, Karypis G. Item-based top-N recommenda-tion algorithms. ACM Transactions on Information Systems,2004, 22(1): 143-177.
|
[15] |
Linden G, Smith B, York J. Amazon.com recommendations:Item-to-item collaborative filtering. IEEE Internet comput-ing, 2003, 7(1): 76-80.
|
[16] |
Sarwar B, Karypis G, Konstan J, Reidl J. Item-based collabo-rative filtering recommendation algorithms. In Proc. the 10thInt. World Wide Web Conference, May 2001, pp.285-295.
|
[17] |
Ma H, King I, Lyu M. Effective missing data prediction forcollaborative filtering. In Proc. the 30th Conf. Research andDevelopment in Information Retrieval, Jul. 2007, pp.39-46.
|
[18] |
Wang J, Vries De A, Reinders M. Unifying user-based anditem-based collaborative filtering approaches by similarity fu-sion. In Proc. the 29th Conf. Research and Development inInformation Retrieval, Aug. 2006, pp.501-508.
|
[19] |
Zheng Z, Ma H, Lyu M R, King I. WSRec: A collaborativefiltering based Web service recommender system. In Proc.the 7th Int. Conf. Web Services, Jul. 2009, pp.437-444.
|
[20] |
Zheng Z, Ma H, Lyu M R, King I. QoS-awareWeb service rec-ommendation by collaborative filtering. IEEE Transactionson Service Computing, 2011, 4(2): 140-152.
|
[21] |
Resnick P, Iacovou N, Sushak M, Bergstrom P, Riedl J. Grou-pLens: An open architecture for collaborative filtering of net-news. In Proc. the 1994 ACM Conf. Computer SupportedCooperative Work, Oct. 1994, pp.175-186.
|
[22] |
Shardanand U, Maes P. Social information filtering: Algo-rithms for automating "Word of Mouth". In Proc. HumanFactors in Computing Systems, May 1995, pp.210-217.
|
[23] |
Candillier L, Meyer F, Fessant F. Designing specific weightedsimilarity measures to improve collaborative filtering systems.In Proc. the 12th Industrial Conf. Data Mining, Jul. 2008,pp.242-255.
|
[24] |
Ahn J H. A new similarity measure for collaborative filteringto alleviate the new user cold-starting problem. InformationSciences, 2008, 178(1): 37-51.
|
[25] |
Zeng C, Xing C X, Zhou L Z, Zheng X H. Similarity measureand instance selection for collaborative filtering. Int. Journalof Electronic Commerce, 2004, 8(4): 115-129.
|
[26] |
Fouss F, Pirotte A, Renders J M, Saerens M. Random-walkcomputation of similarities between nodes of a graph withapplication to collaborative recommendation. IEEE Trans.Knowledge and Data Engineering, 2007, 19(3): 355-369.
|
[27] |
Symeonidis P, Nanopoulos A, Papadopoulos A N, Manolopou-los Y. Collaborative filtering: Fallacies and insights in mea-suring similarity. In Proc. the 10th PKDD Workshop on WebMining, Sept. 2006, pp.56-67.
|
[28] |
Shi Y, Larson M, Hanjalic A. Exploiting user similarity basedon rated-item pools for improved user-based collaborative fil-tering. In Proc. the 3rd ACM Conf. Recommender Systems,Oct. 2009, pp.125-132.
|
[29] |
Miller B, Albert I, Lam S, Konstan J, Riedl J. MovieLensunplugged: Experiences with an occasionally connected rec-ommender system. In Proc. the 8th International Conferenceon Intelligent User Interfaces, Jan. 2003, pp.263-266
|
[1] | Peng-Sheng Liu, Li-Nan Zheng, Jia-Le Chen, Guang-Fa Zhang, Yang Xu, Jin-Yun Fang. Enhancing Recommendation with Denoising Auxiliary Task[J]. Journal of Computer Science and Technology, 2024, 39(5): 1123-1137. DOI: 10.1007/s11390-024-4069-5 |
[2] | Bushra Alhijawi, Ghazi AL-Naymat. Novel Positive Multi-Layer Graph Based Method for Collaborative Filtering Recommender Systems[J]. Journal of Computer Science and Technology, 2022, 37(4): 975-990. DOI: 10.1007/s11390-021-0420-2 |
[3] | Reza Jafari Ziarani, Reza Ravanmehr. Serendipity in Recommender Systems: A Systematic Literature Review[J]. Journal of Computer Science and Technology, 2021, 36(2): 375-396. DOI: 10.1007/s11390-020-0135-9 |
[4] | Fu-Zhen Zhuang, Ying-Min Zhou, Hao-Chao Ying, Fu-Zheng Zhang, Xiang Ao, Xing Xie, Qing He, Hui Xiong. Sequential Recommendation via Cross-Domain Novelty Seeking Trait Mining[J]. Journal of Computer Science and Technology, 2020, 35(2): 305-319. DOI: 10.1007/s11390-020-9945-z |
[5] | Yang Liu, Zhi Li, Wei Huang, Tong Xu, En-Hong Chen. Exploiting Structural and Temporal Influence for Dynamic Social-Aware Recommendation[J]. Journal of Computer Science and Technology, 2020, 35(2): 281-294. DOI: 10.1007/s11390-020-9956-9 |
[6] | Qi Liu, Hong-Ke Zhao, Le Wu, Zhi Li, En-Hong Chen. Illuminating Recommendation by Understanding the Explicit Item Relations[J]. Journal of Computer Science and Technology, 2018, 33(4): 739-755. DOI: 10.1007/s11390-018-1853-0 |
[7] | Jun-Li Zhao, Zhong-Ke Wu, Zhen-Kuan Pan, Fu-Qing Duan, Jin-Hua Li, Zhi-Han Lv, Kang Wang, Yu-Cong Chen. 3D Face Similarity Measure by Fréchet Distances of Geodesics[J]. Journal of Computer Science and Technology, 2018, 33(1): 207-222. DOI: 10.1007/s11390-018-1814-7 |
[8] | Xin Xin, Chin-Yew Lin, Xiao-Chi Wei, He-Yan Huang. When Factorization Meets Heterogeneous Latent Topics: An Interpretable Cross-Site Recommendation Framework[J]. Journal of Computer Science and Technology, 2015, 30(4): 917-932. DOI: 10.1007/s11390-015-1570-x |
[9] | Xiang-Liang Zhang, Tak Man Desmond Lee, Georgios Pitsilis. Securing Recommender Systems Against Shilling Attacks Using Social-Based Clustering[J]. Journal of Computer Science and Technology, 2013, 28(4): 616-624. DOI: 10.1007/s11390-013-1362-0 |
[10] | Marcelo G. Armentano, Daniela Godoy, Analia Amandi. Topology-Based Recommendation of Users in Micro-Blogging Communities[J]. Journal of Computer Science and Technology, 2012, 27(3): 624-634. DOI: 10.1007/s11390-012-1249-5 |