[1] Nelson M, Rejeski W, Blair S et al. Physical activity and pub-lic health in older adults: Recommendation from the Amer-ican college of sports, medicine and the American heart as-sociation. Medicine & Science in Sports & Exercise, 2007,39(8): 1435-1445.[2] Berntson G, Bigger J, Eckberg D et al. Heart rate variability:Origins, methods, and interpretive caveats. Psychophysiol-ogy, 1997, 34(6): 623-648.[3] Georgoulas G, Stylios C, Groumpos P. Predicting the risk ofmetabolic acidosis for newborns based on fetal heart rate sig-nal classification using support vector machines. IEEE Trans.Biomedical Engineering, 2006, 53(5): 875-884.[4] Vasios G, Prentza A, Blana D et al. Classification of fe-tal heart rate tracings based on wavelet-transform and self-organizing-map neural networks. In Proc. the 23rd AnnualInt. Conf. IEEE Engineering in Medicine and Biology Soci-ety, October 2001, Vol.2, pp.1633-1636.[5] Linh T, Osowski S, Stodolski M. On-line heart beat recog-nition using Hermite polynomials and neuro-fuzzy network.IEEE Trans. Instrum. Meas., 2003, 52(4): 1224-1231.[6] Li S, Ji Y, Liu G. Optimal wavelet basis selection of waveletshrinkage for ECG de-noising. In Proc. Int. Conf. Manage-ment and Service Science, September 2009, pp.1-4.[7] Hu Y, Palreddy S, Tompkins W. A patient-adaptable ECGbeat classifier using a mixture of experts approach. IEEETrans. Biomedical Engineering, 1997, 44(9): 891-900.[8] Moraes J, Seixas M, Vilani F, Costa E. A real time QRScomplex classification method using Mahalanobis distance. InProc. Computers in Cardiology, Sept. 2002, pp.201-204.[9] Papaloukas C, Fotiadis D, Likas A, Michalis L. Automatedmethods for ischemia detection in long duration ECGs. Car-diovascular Reviews & reports, 2003, 24(6): 313-319.[10] Jager F. Feature extraction and shape representation of am-bulatory electrocardiogram using the Karhunen-Loμeve trans-form. Electrotechnical Review, 2002, 69(2): 83-89.[11] Cuesta-Frau D, Pérez-Cortés J, Andreu-García G, Novák D.Feature extraction methods applied to the clustering of elec-trocardiographic signals: A comparative study. In Proc. the16th Int. Conf. Pattern Recognition, August 2002, Vol.3,pp.961-964.[12] Skopin D, Baglikov S. Heartbeat feature extraction fromvowel speech signal using 2D spectrum representation. InProc. the 4th Int. Conf. Information Technology, June 2009.[13] Pickett J. The Acoustics of Speech Communication: Funda-mentals, Speech Perception Theory, and Technology. Allyn &Bacon, 1998.[14] Browman C, Goldstein L. Representation and reality: Physi-cal systems and phonological structure. Journal of Phonetics,1990, 18: 411-424.[15] Maton A, Hopkins J, McLaughlin C et al. Human Biologyand Health. New Jersey, USA: Prentice Hall, 1993.[16] Allen J, Rabiner L. A unified approach to short-time Fourieranalysis and synthesis. Proceedings of IEEE, 1977, 65(11):1558-1564.[17] Cohen L. Time-Frequency Analysis: Theory and Applica-tions. New Jersey, USA: Prentice Hall, 1994.[18] Gonzales R,Woods R. Digital Image Processing (3rd edition),Prentice Hall, 2007.[19] Sezgin M, Sankur B. Survey over image thresholding tech-niques and quantitative performance evaluation. Journal ofElectronic Imaging, 2004, 13(1): 146-168.[20] James A, Dimitrijev S. Inter-image outliers and their applica-tion to image classification. Pattern recognition, 2010, 43(12):4101-4112.[21] Turkbey E, Jorgensen N, Johnson W et al. Physical activityand physiological cardiac remodelling in a community setting:The Multi-Ethnic Study of Atherosclerosis (MESA). Heartand Education in Heart, 2010, 96(1): 42-48. |