SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Yong-Xin Tong, Jieying She, Lei Chen. Towards Better Understanding of App Functions[J]. Journal of Computer Science and Technology, 2015, 30(5): 1130-1140. DOI: 10.1007/s11390-015-1588-0 |
[1] |
Liu S, Wang S, Zhu F, Zhang J, Krishnan R. HYDRA:Large-scale social identity linkage via heterogeneous behavior modeling. In Proc. ACM SIGMOD, June 2014, pp.51-62.
|
[2] |
Tong Y, Cao C C, Chen L. TCS:Efficient topic discovery over crowd-oriented service data. In Proc. the 20th SIGKDD, August 2014, pp.861-870.
|
[3] |
Baeza-Yates R, Jiang D, Silvestri F, Harrison B. Predicting the next app that you are going to use. In Proc. the 8th WSDM, February 2015, pp.285-294.
|
[4] |
She J, Tong Y, Chen L, Cao C C. Conflict-aware eventparticipant arrangement. In Proc. the 31st ICDE, April 2015, pp.735-746.
|
[5] |
She J, Tong Y, Chen L. Utility-aware social eventparticipant planning. In Proc. ACM SIGMOD, May 31-June 4, 2015, pp.1629-1643.
|
[6] |
Tong Y, Meng R, She J. On bottleneck-aware arrangement for event-based social networks. In Proc. the 31st ICDE Workshops, April 2015, pp.216-223.
|
[7] |
Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation. Journal of Machine Learning Research, 2003, 3:993-1022.
|
[8] |
Griffiths T L, Steyvers M. Finding scientific topics. Proc. the National Academy of Sciences, 2004, 101(Suppl.1):5228-5235.
|
[9] |
Jo Y, Oh A H. Aspect and sentiment unification model for online review analysis. In Proc. the 4th WSDM, February 2011, pp.815-824.
|
[10] |
Sato I, Nakagawa H. Topic models with power-law using Pitman-Yor process. In Proc. the 16th SIGKDD, July 2010, pp.673-682.
|
[11] |
Wang C, Wang J, Xie X, Ma W Y. Mining geographic knowledge using location aware topic model. In Proc. the 4th ACM Workshop on GIR, November 2007, pp.65-70.
|
[12] |
Yin Z, Cao L, Han J, Zhai C, Huang T. Geographical topic discovery and comparison. In Proc. the 20th WWW, March 28-April 1, 2011, pp.247-256.
|
[13] |
Jiang D, Vosecky J, Leung K W T, Ng W. G-WSTD:A framework for geographic web search topic discovery. In Proc. the 21st CIKM, October 29-November 2, 2012, pp.1143-1152.
|
[14] |
Jiang D, Leung K W T, Ng W, Li H. Beyond click graph:Topic modeling for search engine query log analysis. In Proc. the 18th DASFAA, April 2013, pp.209-223.
|
[15] |
Sizov S. Geofolk:Latent spatial semantics in Web 2.0 social media. In Proc. the 3rd WSDM, February 2010, pp.281-290.
|
[16] |
Eisenstein J, O'Connor B, Smith N A, Xing E P. A latent variable model for geographic lexical variation. In Proc. the EMNLP, October 2010, pp.1277-1287.
|
[17] |
Jiang D, Leung K W T, Vosecky J, Ng W. Personalized query suggestion with diversity awareness. In Proc. the 30th ICDE, March 31-April 4, 2014, pp.400-411.
|
[18] |
Jiang D, Leung K W T, Ng W. Query intent mining with multiple dimensions of web search data. World Wide Web, 2015.
|
[19] |
Hao Q, Cai R, Wang C, Xiao R, Yang J M, Pang Y, Zhang L. Equip tourists with knowledge mined from travelogues. In Proc. the 19th WWW, April 2010, pp.401-410.
|
[20] |
Teh Y W. A hierarchical Bayesian language model based on Pitman-Yor processes. In Proc. the 44th ACL, July 2006, pp.985-992.
|
[21] |
El-Arini K. Dirichlet Processes:A Gentle Tutorial. 2008. https://www.cs.cmu.edu/~kbe/dptutorial.pdf, Aug. 2015.
|
[22] |
Wallach H M. Structured topic models for language[Ph.D. Thesis]. Univ. Cambridge, 2008.
|
[23] |
Rosen-ZviM, Griffiths T, Steyvers M, Smyth P. The authortopic model for authors and documents. In Proc. the 20th UAI, July 2004, pp.487-494.
|
[24] |
Xia H, Li J, Tang J, Moens M F. Plink-LDA:Using link as prior information in topic modeling. In Proc. the 17th DASFAA, April 2012, pp.213-227.
|
[1] | Dong Liu, Zhi-Lei Ren, Zhong-Tian Long, Guo-Jun Gao, He Jiang. Mining Design Pattern Use Scenarios and Related Design Pattern Pairs: A Case Study on Online Posts[J]. Journal of Computer Science and Technology, 2020, 35(5): 963-978. DOI: 10.1007/s11390-020-0407-4 |
[2] | Sai-Sai Gong, Wei Hu, Wei-Yi Ge, Yu-Zhong Qu. Modeling Topic-Based Human Expertise for Crowd Entity Resolution[J]. Journal of Computer Science and Technology, 2018, 33(6): 1204-1218. DOI: 10.1007/s11390-018-1882-8 |
[3] | Yang Li, Wen-Zhuo Song, Bo Yang. Stochastic Variational Inference-Based Parallel and Online Supervised Topic Model for Large-Scale Text Processing[J]. Journal of Computer Science and Technology, 2018, 33(5): 1007-1022. DOI: 10.1007/s11390-018-1871-y |
[4] | Tie-Ke He, Hao Lian, Ze-Min Qin, Zhen-Yu Chen, Bin Luo. PTM: A Topic Model for the Inferring of the Penalty[J]. Journal of Computer Science and Technology, 2018, 33(4): 756-767. DOI: 10.1007/s11390-018-1854-z |
[5] | Peng-Peng Zhao, Hai-Feng Zhu, Yanchi Liu, Zi-Ting Zhou, Zhi-Xu Li, Jia-Jie Xu, Lei Zhao, Victor S. Sheng. A Generative Model Approach for Geo-Social Group Recommendation[J]. Journal of Computer Science and Technology, 2018, 33(4): 727-738. DOI: 10.1007/s11390-018-1852-1 |
[6] | Fei-Fei Kou, Jun-Ping Du, Cong-Xian Yang, Yan-Song Shi, Wan-Qiu Cui Mei-Yu Liang, Yue Geng. Hashtag Recommendation Based on Multi-Features of Microblogs[J]. Journal of Computer Science and Technology, 2018, 33(4): 711-726. DOI: 10.1007/s11390-018-1851-2 |
[7] | Xi-Ming Li, Ji-Hong Ouyang. Tuning the Learning Rate for Stochastic Variational Inference[J]. Journal of Computer Science and Technology, 2016, 31(2): 428-436. DOI: 10.1007/s11390-016-1636-4 |
[8] | Xin Xin, Chin-Yew Lin, Xiao-Chi Wei, He-Yan Huang. When Factorization Meets Heterogeneous Latent Topics: An Interpretable Cross-Site Recommendation Framework[J]. Journal of Computer Science and Technology, 2015, 30(4): 917-932. DOI: 10.1007/s11390-015-1570-x |
[9] | Peng Li, Bin Wang, Wei Jin. ImprovingWeb Document Clustering through Employing User-Related Tag Expansion Techniques[J]. Journal of Computer Science and Technology, 2012, 27(3): 554-566. DOI: 10.1007/s11390-012-1243-y |
[10] | Xiao-Jun Wan, Yu-Xin Peng. A New Retrieval Model Based on TextTiling for Document Similarity Search[J]. Journal of Computer Science and Technology, 2005, 20(4): 552-558. |