[1] Yang D, Shastri A, Rundensteiner E A, Ward M O. An optimal strategy for monitoring top-k queries in streaming windows. In Proc. the 14th International Conference on Extending Database Technology, March 2011, pp.57-68.[2] Mouratidis K, Bakiras S, Papadias D. Continuous monitoring of top-k queries over sliding windows. In Proc. ACM SIGMOD International Conference on Management of Data, June 2006, pp.635-646.[3] Bai M, Xin J C, Wang G R, Zhang L M, Zimmermann R, Yuan Y, Wu X D. Discovering the k representative skyline over a sliding window. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(8):2041-2056.[4] Yu A, Agarwal P K, Yang J. Processing a large number of continuous preference top-k queries. In Proc. ACM SIGMOD International Conference on Management of Data, June 2012, pp.397-408.[5] Shen Z T, Cheema M A, Lin X M, Zhang W J, Wang H X. Efficiently monitoring top-k pairs over sliding windows. In Proc. the 28th International Conference on Data Engineering, April 2012, pp.798-809.[6] Yang X C, Qiu T, Wang B, Zheng B H, Wang Y S, Li C. Negative factor:Improving regular-expression matching in strings. ACM Transactions on Database Systems, 2016, 40(4):25.[7] Yang X C, Liu H L, Wang B. ALAE:Accelerating local alignment with affine gap exactly in biosequence databases. Proceedings of the VLDB Endowment, 2012, 5(11):1507-1518.[8] Yang X C, Wang B, Qiu T, Wang Y S, Li C. Improving regular-expression matching on strings using negative factors. In Proc. ACM SIGMOD International Conference on Management of Data, June 2013, pp.361-372.[9] Xie X H, Yang X C, Wang J Y, Wang B, Li C. Efficient direct search on compressed genomic data. In Proc. the 29th International Conference on Data Engineering, April 2013, pp.961-972.[10] Yi K, Yu H, Yang J, Xia G Q, Chen Y G. Efficient maintenance of materialized top-k views. In Proc. the 19th International Conference on Data Engineering, March 2003, pp.189-200.[11] Pripu?i? K, ? arko I P, Aberer K. Time-and space-efficient sliding window top-k query processing. ACM Transactions on Database Systems, 2015, 40(1):Article No. 1.[12] Alon N, Matias Y, Szegedy M. The space complexity of approximating the frequency moments. In Proc. the 28th Annual ACM Symposium on the Theory of Computing, May 1996, pp.20-29.[13] Datar M, Gionis A, Indyk P, Motwani R. Maintaining stream statistics over sliding windows. In Proc. the 13th Annual ACM SIAM Symposium on Discrete Algorithms, January 2002, pp.635-644.[14] Harvey N J A, Nelson J, Onak K. Sketching and streaming entropy via approximation theory. In Proc. the 49th Annual IEEE Symposium on Foundations of Computer Science, Oct. 2008, pp.489-498.[15] Tong Y X, Zhang X F, Chen L. Tracking frequent items over distributed probabilistic data. World Wide Web, 2016, 19(4):579-604.[16] Charikar M, Chen K, Farach-Colton M. Finding frequent items in data streams. In Proc. the 29th International Conference on Automata, Languages and Programming, July 2002, pp.693-703.[17] Ganguly S, Majumder A. Cr-precis:A deterministic summary structure for update data streams. In Proc. the 1st Int. Symp. Combinatorics, Algorithms, Probabilistic and Experimental Methodologies, April 2007, pp.48-59.[18] Shrivastava N, Buragohain C, Agrawal D, Suri S. Medians and beyond:New aggregation techniques for sensor networks. In Proc. the 2nd International Conference on Embedded Networked Sensor Systems, November 2004, pp.239-249.[19] Cormode G, Muthukrishnan S. An improved data stream summary:The count-min sketch and its applications. Journal of Algorithms, 2005, 55(1):58-75.[20] DeGroot M H, Schervish M J. Probability and Statistics (4th edition). China Machine Press, 2012. |