SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Kang Li, Fa-Zhi He, Hai-Ping Yu. Robust Visual Tracking Based on Convolutional Features with Illumination and Occlusion Handing[J]. Journal of Computer Science and Technology, 2018, 33(1): 223-236. DOI: 10.1007/s11390-017-1764-5 |
[1] |
Wang N Y, Shi J P, Yeung D Y, Jia J Y. Understanding and diagnosing visual tracking systems. In Proc. IEEE Int. Conf. Computer Vision, December 2015, pp.3101-3109.
|
[2] |
Zhang X Q, Hu W M, Bao H J, Maybank S. Robust head tracking based on multiple cues fusion in the kernelBayesian framework. IEEE Trans. Circuits and Systems for Video Technology, 2013, 23(7):1197-1208.
|
[3] |
Zhang X Q, Hu W M, Xie N H, Bao H J, Maybank S. A robust tracking system for low frame rate video. International Journal of Computer Vision, 2015, 115(3):279-304.
|
[4] |
Zhang X Q, Hu W M, Qu W, Maybank S. Multiple object tracking via species-based particle swarm optimization. IEEE Trans. Circuits and Systems for Video Technology, 2010, 20(11):1590-1602.
|
[5] |
Sun J, He F Z, Chen Y L, Chen X. A multiple template approach for robust tracking of fast motion target. Applied Mathematics-A Journal of Chinese Universities, 2016, 31(2):177-197.
|
[6] |
Grabner H, Grabner M, Bischof H. Realtime tracking via on-line boosting. In Proc. British Machine Vision Conf., September 2006, pp.47-56.
|
[7] |
Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Analysis and Machine Intelligence, 2011, 33(8):1619-1632.
|
[8] |
Hare S, Golodetz S, Saffari A, Vineet V, Cheng M M, Hicks S L, Torr P H S. Struck:Structured output tracking with kernels. IEEE Trans. Pattern Analysis and Machine Intelligence, 2016, 38(10):2096-2109.
|
[9] |
Mei X, Ling H B. Robust visual tracking using l1 minimization. In Proc. IEEE 12th Int. Conf. Computer Vision, September 2009, pp.1436-1443.
|
[10] |
Li K, He F Z, Yu H P, Chen X. A correlative classifiers approach based on particle filter and sample set for tracking occluded target. Applied Mathematics-A Journal of Chinese Universities, 2017, 32(3):294-312
|
[11] |
Zhong W, Lu H C, Yang M H. Robust object tracking via sparsity-based collaborative model. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2012, pp.1838-1845.
|
[12] |
Wu Y Q, He F Z, Zhang D J, Li X X. Service-oriented feature-based data exchange for cloud-based design and manufacturing. IEEE Trans. Services Computing, 2015, PP(99). doi: 10.1109/TSC.2015.2501981.
|
[13] |
Bao C L, Wu Y, Ling H B, Ji H. Real time robust L1 tracker using accelerated proximal gradient approach. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2012, pp.1830-1837.
|
[14] |
Ross D A, Lim J, Lin R S, Yang M H. Incremental learning for robust visual tracking. International Journal of Computer Vision, 2008, 77(1/2/3):125-141.
|
[15] |
Kwon J, Lee K M. Visual tracking decomposition. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2010, pp.1269-1276.
|
[16] |
Zhang K H, Zhang L, Yang M H. Real-time compressive tracking. In Proc. the 12th European Conf. Computer Vision, October 2012, pp.864-877.
|
[17] |
Ojala T, Pietikainen M, Mäenpaa T. Multiresolution grayscale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987.
|
[18] |
Li K, He F Z, Chen X. Real-time object tracking via compressive feature selection. Frontiers of Computer Science, 2016, 10(4):689-701.
|
[19] |
Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, December 2001, pp.I-511-I-518.
|
[20] |
Ni B, He F Z, Pan Y T, Yuan Z Y. Using shapes correlation for active contour segmentation of uterine fibroid ultrasound images in computer-aided therapy. Applied Mathematics-A Journal of Chinese Universities, 2016, 31(1):37-52.
|
[21] |
Zhang D J, He F Z, Han S, Zou L, Wu Y Q, Chen Y L. An efficient approach to directly compute the exact Hausdorff distance for 3D point sets. Integrated Computer Aided Engineering, 2017, 24(3):261-277.
|
[22] |
Chen Y L, He F Z, Wu Y Q, Hou N. A local start search algorithm to compute exact Hausdorff distance for arbitrary point sets. Pattern Recognition, 2017, 67:139-148
|
[23] |
Li K, He F Z, Yu H, Chen X. A parallel and robust object tracking approach synthesizing adaptive Bayesian learning and improved incremental subspace learning. Frontiers of Computer Science. doi: 10.1007/s11704-018-6442-4
|
[24] |
Zhang D J, He F Z, Han S H, Li X X. Quantitative optimization of interoperability during feature-based data exchange. Integrated Computer Aided Engineering, 2016, 23(1):31-50.
|
[25] |
Wang L, Liu T, Wang G, Chan K L, Yang Q X. Video tracking using learned hierarchical features. IEEE Trans. Image Processing, 2015, 24(4):1424-1435.
|
[26] |
Ma C, Huang J B, Yang X K, Yang M H. Hierarchical convolutional features for visual tracking. In Proc. IEEE Int. Conf. Computer Vision, December 2015, pp.3074-3082.
|
[27] |
Wang L J, Ouyang W L, Wang X G, Lu H C. Visual tracking with fully convolutional networks. In Proc. IEEE Int. Conf. Computer Vision, December 2015, pp.3119-3127.
|
[28] |
Wolffsohn J S, Mukhopadhyay D, Rubinstein M. Image enhancement of real-time television to benefit the visually impaired. American Journal of Ophthalmology, 2007, 144(3):436-440.
|
[29] |
Raheja J L, Kumar U. Human facial expression detection from detected in captured image using back propagation neural network. International Journal of Computer Science & Information Technology, 2010, 2(1):116-123.
|
[30] |
Sevilla-Lara L, Learned-Miller E. Distribution fields for tracking. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2012, pp.1910-1917.
|
[31] |
Oron S, Bar-Hillel A, Levi D, Avidan S. Locally orderless tracking. International Journal of Computer Vision, 2015, 111(2):213-228.
|
[32] |
Kalal Z, Mikolajczyk K, Matas J. Tracking-learningdetection. IEEE Trans. Pattern Analysis and Machine Intelligence, 2012, 34(7):1409-1422.
|
[33] |
Liu B Y, Huang J Z, Yang L, Kulikowsk C. Robust tracking using local sparse appearance model and K-selection. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2011, pp.1313-1320.
|
[34] |
Henriques J F, Caseiro R, Martins P, Batista J. Exploiting the circulant structure of tracking-by-detection with kernels. In Proc. the 12th European Conf. Computer Vision, October 2012, pp.702-715.
|
[35] |
Wang D, Lu H C, Yang M H. Least soft-threshold squares tracking. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2013, pp.2371-2378.
|
[36] |
Li Y, Zhu J K, Hoi S C H. Reliable patch trackers:Robust visual tracking by exploiting reliable patches. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2015, pp.353-361.
|
[37] |
Sun C, Wang D, Lu H C. Occlusion-aware fragment-based tracking with spatial-temporal consistency. IEEE Trans. Image Processing, 2016, 25(8):3814-3825.
|
[38] |
Lv X, He F Z, Cai W W, Cheng Y. A string-wise CRDT algorithm for smart and large-scale collaborative editing systems. Advanced Engineering Informatics, 2017, 33:397-409
|
[39] |
Zhou Y, He F Z, Qiu Y M. Optimization of parallel iterated local search algorithms on graphics processing unit. The Journal of Supercomputing, 2016, 72(6):2394-2416.
|
[40] |
Zhou Y, He F Z, Qiu Y M. Dynamic strategy based parallel ant colony optimization on GPUs for TSPs. Science China Information Sciences, 2017, 60:068102.
|
[41] |
Yan X H, He F Z, Hou N, Ai H J. An efficient particle swarm optimization for largescale hardware/software codesign system. International Journal of Cooperative Information Systems. doi: 10.1142/S0218843017410015.
|
[42] |
Cheng Y, He F Z, Wu Y Q, Zhang D J. Meta-operation conflict resolution for human-human interaction in collaborative feature-based CAD systems. Cluster Computing, 2016, 19(1):237-253.
|
[43] |
Yan X H, He F Z, Chen Y L. A novel hardware/software partitioning method based on position disturbed particle swarm optimization with invasive weed optimization. Journal of Computer Science and Technology, 2017, 32(2):340-355.
|