|
Journal of Computer Science and Technology ›› 2019, Vol. 34 ›› Issue (1): 3-15.doi: 10.1007/s11390-019-1895-y
Special Issue: Artificial Intelligence and Pattern Recognition; Emerging Areas
• Special Section of Advances in Computer Science and Technology—Current Advances in the NSFC Joint Research Fund for Overseas Chinese Scholars and Scholars in Hong Kong and Macao 2014-2017 (Part 1) • Previous Articles Next Articles
Wessam Elhefnawy1, Min Li2, Jian-Xin Wang2, Member, IEEE, and Yaohang Li1,*, Member, ACM, IEEE
[1] Schwede T. Protein modeling:What happened to the protein structure gap? Structure, 2013, 21(9):1531-1540. [2] Chothia C. Proteins. One thousand families for the molecular biologist. Nature, 1992, 357(6379):543-544. [3] Andreeva A, Howorth D, Chandonia J M, Brenner S E, Hubbard T J P, Chothia C, Murzin A G. Data growth and its impact on the SCOP database:New developments. Nucleic Acids Research, 2008, 36:D419-D425. [4] Sillitoe I, Cuff A L, Dessailly B H, Dawson D L, Furnham N, Lee D, Lees J G, Lewis T E, Studer R A, Rentzsch R, Yeats C, Thornton J M, Orengo C A. New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures. Nucleic Acids Research, 2013, 41(D1):D490-D498. [5] Chen D. Structural genomics:Exploring the 3D protein landscape, 2010. Biomedical Computation Review. http://biomedicalcomputationreview.org/content/structural-genomics-exploring-3d-protein-landscape, Nov. 2018. [6] Kolinski A. Protein modeling and structure prediction with a reduced representation. Acta Biochimica Polonica, 2004, 51(2):349-371. [7] Schwede T, Kopp J, Guex N, Peitsch M C. SWISS-MODEL:An automated protein homology-modeling server. Nucleic Acids Research, 2003, 31(13):3381-3385. [8] Zhou J F, Grigoryan G. Rapid search for tertiary fragments reveals protein sequence-structure relationships. Protein Science, 2015, 24(4):508-524. [9] Simons K T, Kooperberg C, Huang E, Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. Journal of Molecular Biology, 1997, 268(1):209-225. [10] Li Y. Conformational sampling in template-free protein loop structure modeling:An overview. Computational and Structural Biotechnology Journal, 2013, 5:Article No. e201302003. [11] Li Y, Rata I, Jakobsson E. Integrating multiple scoring functions to improve protein loop structure conformation space sampling. In Proc. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, May 2010. [12] Li Y, Rata I, Chiu S W, Jakobsson E. Improving predicted protein loop structure ranking using a Pareto-optimality consensus method. BMC Structural Biology, 2010, 10:Article No. 22. [13] Simons K T, Ruczinski I, Kooperberg C, Fox B A, Bystroff C, Baker D. Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins. Proteins:Structure, Function, and Genetics, 1999, 34(1):82-95. [14] Kolodny R, Koehl P, Guibas L, Levitt M. Small libraries of protein fragments model native protein structures accurately. Journal of Molecular Biology, 2002, 323(2):297-307. [15] Budowski-Tal I, Nov Y, Kolodny R. FragBag, an accurate representation of protein structure, retrieves structural neighbors from the entire PDB quickly and accurately. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(8):3481-3486. [16] Handl J, Knowles J, Vernon R, Baker D, Lovell S C. The dual role of fragments in fragment-assembly methods for de novo protein structure prediction. Proteins:Structure, Function, and Bioinformatics, 2012, 80(2):490-504. [17] Ji H, Yu W, Li Y. A rank revealing randomized singular value decomposition (R3SVD) algorithm for low-rank matrix approximations. arXiv:1605.08134, 2016. https://arxiv.org/ftp/arxiv/papers/1605/1605.08134.pdf, September 2018. [18] Elhefnawy W, Li M, Wang J, Li Y. Construction of protein backbone fragments libraries on large protein sets using a randomized spectral clustering algorithm. In Proc. the 13th International Symposium on Bioinformatics Research and Applications, May 2016, pp.108-119. [19] Wang G L, Dunbrack R L. PISCES:A protein sequence culling server. Bioinformatics, 2003, 19(12):1589-1591. [20] Dong Q W, Zhou S G, Guan J H. A new taxonomybased protein fold recognition approach based on autocrosscovariance transformation. Bioinformatics, 2009, 25(20):2655-2662. [21] Ding C H Q, Dubchak I. Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics, 2001, 17(4):349-358. [22] Fox N K, Brenner S E, Chandonia J M. SCOPe:Structural classification of proteins-extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Research, 2014, 42(D1):D304-D309. [23] von Luxburg U. A tutorial on spectral clustering. Statistics and Computing, 2007, 17(4):395-416. [24] Shi J B, Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905. [25] Ng A Y, Jordan M I, Weiss Y. On spectral clustering:Analysis and an algorithm. In Proc. the 14th International Conference on Neural Information Processing Systems:Natural and Synthetic, December 2001, pp.849-856. [26] Halko N, Martinsson P G, Tropp J A. Finding structure with randomness:Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 2011, 53(2):217-288. [27] Gu Y, Yu W, Li J, Liu S, Li Y. Single-pass PCA of large high-dimensional data. In Proc. the 26th International Joint Conference on Artificial Intelligence, August 2017, pp.3350-3356. [28] Li Y, Yu W. A fast implementation of singular value thresholding algorithm using recycling rank revealing randomized singular value decomposition. arXiv:1704.05528, 2017. https://arxiv.org/pdf/1704.05528.pdf, September 2018. [29] Strobl C, Boulesteix A L, Zeileis A, Hothorn T. Bias in random forest variable importance measures:Illustrations, sources and a solution. BMC Bioinformatics, 2007, 8:Article No. 25. [30] Chiang Y S, Gelfand T I, Kister A E, Gelfand I M. New classification of supersecondary structures of sandwich-like proteins uncovers strict patterns of strand assemblage. Proteins:Structure, Function, and Bioinformatics, 2007, 68(4):915-921. [31] Holmes J B, Tsai J. Some fundamental aspects of building protein structures from fragment libraries. Protein Science, 2004, 13(6):1636-1650. [32] Le Q, Pollastri G, Koehl P. Structural alphabets for protein structure classification:A comparison study. Journal of Molecular Biology, 2009, 387(2):431-450. [33] Bazzoli A, Tettamanzi A G B, Zhang Y. Computational protein design and large-scale assessment by I-TASSER structure assembly simulations. Journal of Molecular Biology, 2011, 407(5):764-776. [34] Elhefnawy W, Chen L, Han Y, Li Y. ICOSA:A distancedependent, orientation-specific coarse-grained contact potential for protein structure modeling. Journal of Molecular Biology, 2015, 427(15):2562-2576. [35] Li Y, Liu H, Rata I, Jakobsson E. Building a knowledgebased statistical potential by capturing high-order interresidue interactions and its applications in protein secondary structure assessment. Journal of Chemical Information and Modeling, 2013, 53(2):500-508. |
No related articles found! |
|
|