Journal of Computer Science and Technology ›› 2020, Vol. 35 ›› Issue (3): 665-696.doi: 10.1007/s11390-020-9349-0

Special Issue: Surveys; Data Management and Data Mining

• Survey • Previous Articles     Next Articles

Data-Driven Approaches for Spatio-Temporal Analysis: A Survey of the State-of-the-Arts

Monidipa Das1, Member, IEEE, Soumya K. Ghosh2, Senior Member, IEEE        

  1. 1 School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
    2 Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
  • Received:2019-01-15 Revised:2019-11-19 Online:2020-05-28 Published:2020-01-08
  • About author:Monidipa Das is currently working as a postdoctoral research fellow in the Computational Intelligence Laboratory, in the School of Computer Science and Engineering (SCSE), Nanyang Technological University (NTU), Singapore. She received her Ph.D. degree in computer science and engineering from the Indian Institute of Technology (IIT) Kharagpur, Kharagpur, in 2018, and her M.E. degree in computer science and engineering from the Indian Institute of Engineering Science and Technology (IIEST), Shibpur, in 2013. Her research interests include spatial informatics, spatio-temporal data mining, soft computing, and machine learning. Dr. Das is a member of IEEE.

With the advancement of telecommunications, sensor networks, crowd sourcing, and remote sensing technology in present days, there has been a tremendous growth in the volume of data having both spatial and temporal references. This huge volume of available spatio-temporal (ST) data along with the recent development of machine learning and computational intelligence techniques has incited the current research concerns in developing various data-driven models for extracting useful and interesting patterns, relationships, and knowledge embedded in such large ST datasets. In this survey, we provide a structured and systematic overview of the research on data-driven approaches for spatio-temporal data analysis. The focus is on outlining various state-of-the-art spatio-temporal data mining techniques, and their applications in various domains. We start with a brief overview of spatio-temporal data and various challenges in analyzing such data, and conclude by listing the current trends and future scopes of research in this multi-disciplinary area. Compared with other relevant surveys, this paper provides a comprehensive coverage of the techniques from both computational/methodological and application perspectives. We anticipate that the present survey will help in better understanding various directions in which research has been conducted to explore data-driven modeling for analyzing spatio-temporal data.

Key words: data-driven modeling; spatio-temporal data; prediction; change pattern detection; outlier detection; hotspot detection; partitioning/summarization; (tele-)coupling; visual analytics;

[1] Samadi S, Wilson C A, Moradkhani H. Uncertainty analysis of statistical downscaling models using Hadley Centre Coupled Model. Theoretical and Applied Climatology, 2013, 114(3/4):673-690.
[2] Ivanovic R F, Valdes P J, Flecker R, Gregoire L J, Gutjahr M. The parameterisation of Mediterranean-Atlantic water exchange in the Hadley Centre model HadCM3, and its effect on modelled North Atlantic climate. Ocean Modelling, 2013, 62:11-16.
[3] Das M, Ghosh S K. Data-driven approaches for meteorological time series prediction:A comparative study of the state-of-the-art computational intelligence techniques. Pattern Recognition Letters, 2018, 105:155-164.
[4] Solomatine D, See L, Abrahart R. Data-driven modelling:Concepts, approaches and experiences. In Practical Hydroinformatics:Computational Intelligence and Technological Developments in Water Applications, Abrahart R J, See L M, Solomatine D P (eds.), Springer, 2009, pp.17-30.
[5] Pelekis N, Theodoulidis B, Kopanakis I, Theodoridis Y. Literature review of spatio-temporal database models. The Knowledge Engineering Review, 2004, 19(3):235-274.
[6] Ding Z, Yang B, Güting R H, Li Y. Network-matched trajectory-based moving-object database:Models and applications. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4):1918-1928.
[7] Ding Z, Yang B, Chi Y, Guo L. Enabling smart transportation systems:A parallel spatio-temporal database approach. IEEE Transactions on Computers, 2016, 65(5):1377-1391.
[8] Shekhar S, Jiang Z, Ali R Y, Eftelioglu E, Tang X, Gunturi V, Zhou X. Spatiotemporal data mining:A computational perspective. ISPRS International Journal of GeoInformation, 2015, 4(4):2306-2338.
[9] Zhou X, Shekhar S, Ali R Y. Spatiotemporal change footprint pattern discovery:An inter-disciplinary survey. Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery, 2014, 4(1):1-23.
[10] Kisilevich S, Mansmann F, Nanni M, Rinzivillo S. Spatiotemporal clustering. In Data Mining and Knowledge Discovery Handbook, Maimon O, Rokach L (eds.), Springer, 2009, pp.855-874.
[11] Kawale J, Chatterjee S, Ormsby D, Steinhaeuser K, Liess S, Kumar V. Testing the significance of spatio-temporal teleconnection patterns. In Proc. the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2012, pp.642-650.
[12] Cheng T, Haworth J, Anbaroglu B, Tanaksaranond G, Wang J. Spatiotemporal data mining. In Handbook of Regional Science, Fischer M M, Nijkamp P (eds.), Springer, 2014, pp.1173-1193.
[13] Aggarwal C C. Outlier analysis. In Data Mining, Aggarwal C C (ed.), Springer, 2015, pp.237-263.
[14] Atluri G, Karpatne A, Kumar V. Spatio-temporal data mining:A survey of problems and methods. ACM Computing Surveys, 2018, 51(4):Article No. 83.
[15] Das M, Ghosh S K. A cost-efficient approach for measuring Moran's index of spatial autocorrelation in geostationary satellite data. In Proc. the 2016 IEEE International Conference on Geoscience and Remote Sensing Symposium, July 2016, pp.5913-5916.
[16] Faghmous J H, Banerjee A, Shekhar S, Steinbach M, Kumar V, Ganguly A R, Samatova N. Theory-guided data science for climate change. IEEE Computer, 2014, 47(11):74-78.
[17] Das M, Ghosh S K. FB-STEP:A fuzzy Bayesian network based data-driven framework for spatio-temporal prediction of climatological time series data. Expert Systems with Applications, 2019, 117:211-227.
[18] Benmouiza K, Cheknane A. Clustered ANFIS network using fuzzy c-means, subtractive clustering, and grid partitioning for hourly solar radiation forecasting. Theoretical and Applied Climatology, 2019, 137(1/2):31-43.
[19] Yaseen Z M, Ghareb M I, Ebtehaj I, Bonakdari H, Siddique R, Heddam S, Yusif A A, Deo R. Rainfall pattern forecasting using novel hybrid intelligent model based ANFIS-FFA. Water Resources Management, 2018, 32(1):105-122.
[20] Kim H Y, Won C H. Forecasting the volatility of stock price index:A hybrid model integrating LSTM with multiple GARCH-type models. Expert Systems with Applications, 2018, 103:25-37.
[21] Duan P, Mao G, Liang W, Zhang D. A unified spatiotemporal model for short-term traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(9):3212-3223.
[22] Cressie N, Wikle C K. Statistics for Spatio-Temporal Data (1st edition). John Wiley&Sons, 2011.
[23] Aryaputera A W, Yang D, Zhao L, Walsh W M. Very shortterm irradiance forecasting at unobserved locations using spatio-temporal kriging. Solar Energy, 2015, 122:1266-1278.
[24] Sahu S K, Bakar K S. Hierarchical Bayesian auto-regressive models for large space time data with applications to ozone concentration modelling. Applied Stochastic Models in Business and Industry, 2012, 28(5):395-415.
[25] Kouziokas G N, Chatzigeorgiou A, Perakis K. Multilayer feed forward models in groundwater level forecasting using meteorological data in public management. Water Resources Management, 2018, 32(15):5041-5052.
[26] Larsen P E, Field D, Gilbert J A. Predicting bacterial community assemblages using an artificial neural network approach. Nature Methods, 2012, 9(6):621-625.
[27] Wang L, Wang Z, Qu H, Liu S. Optimal forecast combination based on neural networks for time series forecasting. Applied Soft Computing, 2018, 66:1-17.
[28] Daliakopoulos I N, Tsanis I K. Comparison of an artificial neural network and a conceptual rainfall-runoff model in the simulation of ephemeral streamflow. Hydrological Sciences Journal, 2016, 61(15):2763-2774.
[29] Raza A, Zhong M. Hybrid artificial neural network and locally weighted regression models for lane-based short-term urban traffic flow forecasting. Transportation Planning and Technology, 2018, 41(8):901-917.
[30] Bazartseren B, Hildebrandt G, Holz K P. Short-term water level prediction using neural networks and neuro-fuzzy approach. Neurocomputing, 2003, 55(3/4):439-450.
[31] Gerek I H. House selling price assessment using two different adaptive neuro-fuzzy techniques. Automation in Construction, 2014, 41:33-39.
[32] Semero Y K, Zhang J, Zheng D, Wei D. A GA-PSO hybrid algorithm based neural network modeling technique for short-term wind power forecasting. Distributed Generation&Alternative Energy Journal, 2018, 33(4):26-43.
[33] Wang X, Wen J, Zhang Y, Wang Y. Real estate price forecasting based on SVM optimized by PSO. Optik-International Journal for Light and Electron Optics, 2014, 125(3):1439-1443.
[34] Gu J, Zhu M, Jiang L. Housing price forecasting based on genetic algorithm and support vector machine. Expert Systems with Applications, 2011, 38(4):3383-3386.
[35] Nandar A. Bayesian network probability model for weather prediction. In Proc. the 2009 International Conference on the Current Trends in Information Technology, December 2009, Article No. 21.
[36] Das M, Ghosh S K. semBnet:A semantic Bayesian network for multivariate prediction of meteorological time series data. Pattern Recognition Letters, 2017, 93:192-201.
[37] Madadgar S, Moradkhani H. Spatio-temporal drought forecasting within Bayesian networks. Journal of Hydrology, 2014, 512:134-146.
[38] Wu Y, Xu W, Feng J, Palaiahnakote S, Lu T. Local and global Bayesian network based model for flood prediction. In Proc. the 24th International Conference on Pattern Recognition, August 2018, pp.225-230.
[39] Das M, Ghosh S, Gupta P, Chowdary V, Nagaraja R, Dadhwal V. FORWARD:A model for FOrecasting Reservoir WAteR dynamics using spatial Bayesian network (SpaBN). IEEE Transactions on Knowledge and Data Engineering, 2017, 29(4):842-855.
[40] Das M, Ghosh S K. BESTED:An exponentially smoothed spatial Bayesian analysis model for spatio-temporal prediction of daily precipitation. In Proc. the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, November 2017, Article No. 55.
[41] Das M, Ghosh S K, Chowdary V, Saikrishnaveni A, Sharma R. A probabilistic nonlinear model for forecasting daily water level in reservoir. Water Resources Management, 2016, 30(9):3107-3122.
[42] Das M, Ghosh S K. Spatio-temporal prediction under scarcity of influencing variables:A hybrid probabilistic graph-based approach. In Proc. the 9th International Conference on Advances in Pattern Recognition, December 2017, Article No. 27.
[43] Yang B, Guo C, Jensen C S. Travel cost inference from sparse, spatio temporally correlated time series using Markov models. Proceedings of the VLDB Endowment, 2013, 6(9):769-780.
[44] Yuan J, Zheng Y, Xie X, Sun G. Driving with knowledge from the physical world. In Proc. the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2011, pp.316-324.
[45] Lu Q, Chang N B, Joyce J, Chen A S, Savic D A, Djordjevic S, Fu G. Exploring the potential climate change impact on urban growth in London by a cellular automata-based Markov chain model. Computers, Environment and Urban Systems, 2018, 68:121-132.
[46] Das M, Ghosh S K. Short-term prediction of land surface temperature using multifractal detrended fluctuation analysis. In Proc. the 2014 Annual IEEE India Conference, 2014, Article No. 330.
[47] Kazem A, Sharifi E, Hussain F K, Saberi M, Hussain O K. Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Applied Soft Computing, 2013, 13(2):947-958.
[48] Kisi O, Cimen M. A wavelet-support vector machine conjunction model for monthly streamflow forecasting. Journal of Hydrology, 2011, 399(1/2):132-140.
[49] Liu S, Yamada M, Collier N, Sugiyama M. Change-point detection in time-series data by relative density-ratio estimation. Neural Networks, 2013, 43:72-83.
[50] Zhou X, Shekhar S, Mohan P. Spatiotemporal change pattern mining:A multi-disciplinary perspective. In SpaceTime Integration in Geography and GIScience, Kwan M P, Richardson D, Wang D, Zhou C H (eds.), Springer, 2015, pp.301-326.
[51] Liang S, Banerjee S, Carlin B P. Bayesian wombling for spatial point processes. Biometrics, 2009, 65(4):1243-1253.
[52] Wu E, Liu W, Chawla S. Spatio-temporal outlier detection in precipitation data. In Proc. the 2nd International Workshop on Knowledge Discovery from Sensor Data, August 2010, pp.115-133.
[53] Huang L, Kulldorff M, Gregorio D. A spatial scan statistic for survival data. Biometrics, 2007, 63(1):109-118.
[54] Nakaya T, Yano K. Visualising crime clusters in a spacetime cube:An exploratory data-analysis approach using space-time kernel density estimation and scan statistics. Transactions in GIS, 2010, 14(3):223-239.
[55] Hsu K C, Li S T. Clustering spatial-temporal precipitation data using wavelet transform and self-organizing map neural network. Advances in Water Resources, 2010, 33(2):190-200.
[56] de Oliveira Silveira E M, de Mello J M, Júnior F W A, de Carvalho L M T. Object-based land-cover change detection applied to Brazilian seasonal savannahs using geostatistical features. International Journal of Remote Sensing, 2018, 39(8):2597-2619.
[57] Das M, Ghosh S K. Spatio-temporal autocorrelation analysis for regional land-cover change detection from remote sensing data. In Proc. the 4th ACM IKDD Conferences on Data Sciences, March 2017, Article No. 8.
[58] Das M, Ghosh S K. Modeling spatio-temporal change pattern using mathematical morphology. In Proc. the 3rd IKDD Conference on Data Science, March 2016, Article No. 4.
[59] Sagar B S D. Visualization of spatiotemporal behavior of discrete maps via generation of recursive median elements. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(2):378-384.
[60] Schubert E, Zimek A, Kriegel H P. Local outlier detection reconsidered:A generalized view on locality with applications to spatial, video, and network outlier detection. Data Mining and Knowledge Discovery, 2014, 28(1):190-237.
[61] Sibolla B H, Coetzee S, van Zyl T L. A framework for visual analytics of spatio-temporal sensor observations from data streams. ISPRS International Journal of Geo-Information, 2018, 7(12):Article No. 475.
[62] Turchini F, Seidenari L, Bimbo A D. Convex polytope ensembles for spatio-temporal anomaly detection. In Proc. the 19th International Conference on Image Analysis and Processing, September 2017, pp.174-184.
[63] Liu C, Xiong H, Ge Y, Geng W, Perkins M. A stochastic model for context-aware anomaly detection in indoor location traces. In Proc. the 12th IEEE International Conference on Data Mining, December 2012, pp.449-458.
[64] Bu Y, Chen L, Fu A W C, Liu D. Efficient anomaly monitoring over moving object trajectory streams. In Proc. the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, June 2009, pp.159-168.
[65] Li X, Han J, Kim S, Gonzalez H. ROAM:Rule-and motifbased anomaly detection in massive moving object data sets. In Proc. the 2007 SIAM International Conference on Data Mining, April 2007, pp.273-284.
[66] Wu H, Sun W, Zheng B. A fast trajectory outlier detection approach via driving behavior modeling. In Proc. the 2017 ACM Conference on Information and Knowledge Management, November 2017, pp.837-846.
[67] Chen C, Zhang D, Castro P S, Li N, Sun L, Li S, Wang Z. iBOAT:Isolation-based online anomalous trajectory detection. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2):806-818.
[68] Linton S L, Jennings J M, Latkin C A, Gomez M B, Mehta S H. Application of space-time scan statistics to describe geographic and temporal clustering of visible drug activity. Journal of Urban Health, 2014, 91(5):940-956.
[69] Fanaee-T H, Gama J. Eigenspace method for spatiotemporal hotspot detection. Expert Sys.:J. Knowl. Eng., 2015, 32(3):454-464.
[70] Zhuang Y, Almeida M, Morabito M, Ding W. Crime hot spot forecasting:A recurrent model with spatial and temporal information. In Proc. the 2017 IEEE International Conference on Big Knowledge, August 2017, pp.143-150.
[71] Parent C, Spaccapietra S, Renso C et al. Semantic trajectories modeling and analysis. ACM Computing Surveys, 2013, 45(4):Article No. 42.
[72] Takahashi K, Kulldorff M, Tango T, Yih K. A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring. International Journal of Health Geographics, 2008, 7(1):Article No. 14.
[73] Birant D, Kut A. ST-DBSCAN:An algorithm for clustering spatial-temporal data. Data&Knowledge Engineering, 2007, 60(1):208-221.
[74] Schreck T, Tekušová T, Kohlhammer J, Fellner D. Trajectory-based visual analysis of large financial time series data. ACM SIGKDD Explorations Newsletter, 2007, 9(2):30-37.
[75] Dong W, Yuan T, Yang K, Li C, Zhang S. Autoencoder regularized network for driving style representation learning. arXiv:1701.01272, 2017., Oct. 2019.
[76] Kieu T, Yang B, Guo C, Jensen C S. Distinguishing trajectories from different drivers using incompletely labeled trajectories. In Proc. the 27th ACM International Conference on Information and Knowledge Management, October 2018, pp.863-872.
[77] Chen Z, Shen H T, Zhou X. Discovering popular routes from trajectories. In Proc. the 27th IEEE International Conference on Data Engineering, April 2011, pp.900-911.
[78] Jiang Z, Evans M, Oliver D, Shekhar S. Identifying K primary corridors from urban bicycle GPS trajectories on a road network. Information Systems, 2016, 57:142-159.
[79] Pan B, Demiryurek U, Banaei-Kashani F, Shahabi C. Spatiotemporal summarization of traffic data streams. In Proc. the ACM SIGSPATIAL International Workshop on GeoStreaming, November 2010, pp.4-10.
[80] Evans M R, Oliver D, Shekhar S, Harvey F. Summarizing trajectories into k-primary corridors:A summary of results. In Proc. the 20th International Conference on Advances in Geographic Information Systems, November 2012, pp.454-457.
[81] Pillai K G, Angryk R A, Aydin B. A filter-and-refine approach to mine spatiotemporal co-occurrences. In Proc. the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, November 2013, pp.104-113.
[82] Mohan P, Shekhar S, Shine J A, Rogers J P. Cascading spatio-temporal pattern discovery. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(11):1977-1992.
[83] Bermingham L, Lee I. Spatio-temporal sequential pattern mining for tourism sciences. Procedia Computer Science, 2014, 29:379-389.
[84] Carlson A, Zaehringer J, Garrett R, Silva R F B, Furumo P, Rey A N, Torres A, Chung M G, Li Y, Liu J. Toward rigorous telecoupling causal attribution:A systematic review and typology. Sustainability, 2018, 10(12):Article No. 4426.
[85] Fang C, Liu H, Li G. International progress and evaluation on interactive coupling effects between urbanization and the eco-environment. Journal of Geographical Sciences, 2016, 26(8):1081-1116.
[86] Deng L, Liu Y. Deep Learning in Natural Language Processing (1st edition). Springer, 2018.
[87] Kong Y, Gao S, Sun B, Fu Y. Action prediction from videos via memorizing hard-to-predict samples. In Proc. the 32nd AAAI Conference on Artificial Intelligence, February 2018, pp.7000-7007.
[88] Ma X, Dai Z, He Z, Ma J, Wang Y, Wang Y. Learning traffic as images:A deep convolutional neural network for large-scale transportation network speed prediction. Sensors, 2017, 17(4):Article No. 818.
[89] Zhang J, Zheng Y, Qi D. Deep spatio-temporal residual networks for citywide crowd flows prediction. In Proc. the 31st AAAI Conference on Artificial Intelligence, February 2017, pp.1655-1661.
[90] Zhang J, Zheng Y, Qi D, Li R, Yi X. DNN-based prediction model for spatio-temporal data. In Proc. the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, October 2016, Article No. 92.
[91] Kang H W, Kang H B. Prediction of crime occurrence from multi-modal data using deep learning. PLoS ONE, 2017, 12(4):Article No. e0176244.
[92] Lv Z, Xu J, Zheng K, Yin H, Zhao P, Zhou X. LC-RNN:A deep learning model for traffic speed prediction. In Proc. the 27th International Joint Conference on Artificial Intelligence, July 2018, pp.3470-3476.
[93] Jain A, Zamir A R, Savarese S, Saxena A. Structural-RNN:Deep learning on spatio-temporal graphs. In Proc. the 2016 IEEE Conference on Computer Vision and Pattern Recognition, June 2016, pp.5308-5317.
[94] Lv Y, Duan Y, Kang W, Li Z, Wang F Y. Traffic flow prediction with big data:A deep learning approach. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2):865-873.
[95] Li X, Peng L, Hu Y, Shao J, Chi T. Deep learning architecture for air quality predictions. Environmental Science and Pollution Research, 2016, 23(22):22408-22417.
[96] Das M, Ghosh S K. Deep-STEP:A deep learning approach for spatiotemporal prediction of remote sensing data. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12):1984-1988.
[97] Das M, Ghosh S K. A deep-learning-based forecasting ensemble to predict missing data for remote sensing analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12):5228-5236.
[98] Liao B, Zhang J,Wu C, McIlwraith D, Chen T, Yang S, Guo Y, Wu F. Deep sequence learning with auxiliary information for traffic prediction. In Proc. the 24th ACM SIGKDD International Conference on Knowledge Discovery&Data Mining, August 2018, pp.537-546.
[99] Pal S, Chowdhury S, Ghosh S K. DCAP:A deep convolution architecture for prediction of urban growth. In Proc. the 2016 IEEE International Geoscience and Remote Sensing Symposium, July 2016, pp.1812-1815.
[100] Mahdianpari M, Salehi B, Rezaee M, Mohammadimanesh F, Zhang Y. Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery. Remote Sensing, 2018, 10(7):Article No. 1119.
[101] Li W, Fu H, Yu L, Gong P, Feng D, Li C, Clinton N. Stacked autoencoder-based deep learning for remote-sensing image classification:A case study of African land-cover mapping. International Journal of Remote Sensing, 2016, 37(23):5632-5646.
[102] Zhang P, Gong M, Su L, Liu J, Li Z. Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116:24-41.
[103] De S, Bruzzone L, Bhattacharya A, Bovolo F, Chaudhuri S. A novel technique based on deep learning and a synthetic target database for classification of urban areas in PolSAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 11(1):154-170.
[104] Lyu H, Lu H, Mou L. Learning a transferable change rule from a recurrent neural network for land cover change detection. Remote Sensing, 2016, 8(6):Article No. 506.
[105] Zhuo L, Jiang L, Zhu Z, Li J, Zhang J, Long H. Vehicle classification for large-scale traffic surveillance videos using convolutional neural networks. Machine Vision and Applications, 2017, 28(7):793-802.
[106] Zhu Y, Lan Z, Newsam S, Hauptmann A. Hidden twostream convolutional networks for action recognition. In Proc. the 14th Asian Conference on Computer Vision, December 2018, pp.363-378.
[107] Zhao S, Liu Y, Han Y, Hong R, Hu Q, Tian Q. Pooling the convolutional layers in deep convNets for video action recognition. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 28(8):1839-1849.
[108] Wang X, Gao L, Wang P, Sun X, Liu X. Two-stream 3-D convNet fusion for action recognition in videos with arbitrary size and length. IEEE Transactions on Multimedia, 2017, 20(3):634-644.
[109] Jia X, Khandelwal A, Nayak G, Gerber J, Carlson K, West P, Kumar V. Incremental dual-memory LSTM in land cover prediction. In Proc. the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2017, pp.867-876.
[110] Zhou Y, Zhang F, Du Z, Ye X, Liu R. Integrating cellular automata with the deep belief network for simulating urban growth. Sustainability, 2017, 9(10):Article No. 1786.
[111] Xu D, Yan Y, Ricci E, Sebe N. Detecting anomalous events in videos by learning deep representations of appearance and motion. Computer Vision and Image Understanding, 2017, 156:117-127.
[112] Zhao Y, Deng B, Shen C, Liu Y, Lu H, Hua X S. Spatiotemporal autoencoder for video anomaly detection. In Proc. the 25th ACM International Conference on Multimedia, October 2017, pp.1933-1941.
[113] Kieu T, Yang B, Jensen C S. Outlier detection for multidimensional time series using deep neural networks. In Proc. the 19th IEEE International Conference on Mobile Data Management, June 2018, pp.125-134.
[114] Zhu Y, Newsam S. Spatio-temporal sentiment hotspot detection using geotagged photos. In Proc. the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, October 2016, Article No. 76.
[115] Chaudhuri G, Mishra N B. Spatio-temporal dynamics of land cover and land surface temperature in gangesbrahmaputra delta:A comparative analysis between India and Bangladesh. Applied Geography, 2016, 68:68-83.
[116] Das M, Ghosh S K. Measuring Moran's I in a cost-efficient manner to describe a land-cover change pattern in largescale remote sensing imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(6):2631-2639.
[117] Buyantuyev A, Wu J. Urban heat islands and landscape heterogeneity:Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecology, 2010, 25(1):17-33.
[118] Huang Y, Zhang L, Zhang P. A framework for mining sequential patterns from spatio-temporal event data sets. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(4):433-448.
[119] Kisi O, Shiri J, Nikoofar B. Forecasting daily lake levels using artificial intelligence approaches. Computers&Geosciences, 2012, 41:169-180.
[120] Chang F J, Chang Y T. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advances in Water Resources, 2006, 29(1):1-10.
[121] Zhou X, Yang T, Shi P, Yu Z, Wang X, Li Z. Prospective scenarios of the saltwater intrusion in an estuary under climate change context using Bayesian neural networks. Stochastic Environmental Research and Risk Assessment, 2017, 31(4):981-991.
[122] Han S, Coulibaly P. Bayesian flood forecasting methods:A review. Journal of Hydrology, 2017, 551:340-351.
[123] Fotovatikhah F, Herrera M, Shamshirband S, Chau K W, Faizollahzadeh Ardabili S, Piran M J. Survey of computational intelligence as basis to big flood management:Challenges, research directions and future work. Engineering Applications of Computational Fluid Mechanics, 2018, 12(1):411-437.
[124] Haest B, Hüppop O, Bairlein F. The influence of weather on avian spring migration phenology:What, where and when?Global Change Biology, 2018, 24(12):5769-5788.
[125] Castaño C, Lindahl B D, Alday J G, Hagenbo A, de Aragón J, Parladé J, Pera J, Bonet J A. Soil microclimate changes affect soil fungal communities in a Mediterranean pine forest. New Phytologist, 2018, 220(4):1211-1221.
[126] Thom D, Rammer W, Dirnböck T, Müller J, Kobler J, Katzensteiner K, Helm N, Seidl R. The impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscape. Journal of Applied Ecology, 2017, 54(1):28-38.
[127] Bruckner M, Fischer G, Tramberend S, Giljum S. Measuring telecouplings in the global land system:A review and comparative evaluation of land footprint accounting methods. Ecological Economics, 2015, 114:11-21.
[128] Schalk S G, Demi L, Smeenge M, Mills D M, Wallace K D, Rosette J J, Wijkstra H, Mischi M. 4-D spatiotemporal analysis of ultrasound contrast agent dispersion for prostate cancer localization:A feasibility study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62(5):839-851.
[129] Rahman M M, Feng Y, Yankeelov T E, Oden J T. A fully coupled space-time multiscale modeling framework for predicting tumor growth. Computer Methods in Applied Mechanics and Engineering, 2017, 320:261-286.
[130] Macharia P M, Giorgi E, Noor A M, Waqo E, Kiptui R, Okiro E A, Snow R W. Spatio-temporal analysis of plasmodium falciparum prevalence to understand the past and chart the future of malaria control in Kenya. Malaria Journal, 2018, 17(1):Article No. 340.
[131] Guinat C, Nicolas G, Vergne T, Bronner A, Durand B, Courcoul A, Gilbert M, Guérin J L, Paul M C. Spatiotemporal patterns of highly pathogenic avian influenza virus subtype H5N8 spread, France, 2016 to 2017. Eurosurveillance, 2018, 23(26):Article No. 1.
[132] Lai P C, Chow C B, Wong H T, Kwong K H, Kwan Y W, Liu S H, Tong W K, Cheung W K, Wong W L. An early warning system for detecting H1N1 disease outbreak-A spatio-temporal approach. International Journal of Geographical Information Science, 2015, 29(7):1251-1268.
[133] Bisanzio D, Dzul-Manzanilla F, Gomez-Dantés H et al. Spatiotemporal coherence of dengue, chikungunya and Zika outbreaks in Merida, Mexico. PLoS:Neglected Tropical Diseases, 2018, 12(3):Article No. 0006298.
[134] Vlahogianni E I, Karlaftis M G, Golias J C. Short-term traffic forecasting:Where we are and where were going. Transportation Research Part C:Emerging Technologies, 2014, 43:3-19.
[135] Nguyen H, Liu W, Chen F. Discovering congestion propagation patterns in spatio-temporal traffic data. IEEE Transactions on Big Data, 2017, 3(2):169-180.
[136] Lim K H, Chan J, Leckie C, Karunasekera S. Personalized trip recommendation for tourists based on user interests, points of interest visit durations and visit recency. Knowledge and Information Systems, 2018, 54(2):375-406.
[137] Dai J, Yang B, Guo C, Ding Z. Personalized route recommendation using big trajectory data. In Proc. the 31st IEEE International Conference on Data Engineering, April 2015, pp.543-554.
[138] Yang B, Guo C, Ma Y, Jensen C S. Toward personalized, context-aware routing. The VLDB Journal, 2015, 24(2):297-318.
[139] Yang B, Dai J, Guo C, Jensen C S, Hu J. PACE:A PathCEntric paradigm for stochastic path finding. The VLDB Journal, 2018, 27(2):153-178.
[140] Hu J, Yang B, Guo C, Jensen C S. Risk-aware path selection with time-varying, uncertain travel costs:A time series approach. The VLDB Journal, 2018, 27(2):179-200.
[141] Wang P, Fu Y, Zhang J, Wang P, Zheng Y, Aggarwal C. You are how you drive:Peer and temporal-aware representation learning for driving behavior analysis. In Proc. the 24th ACM SIGKDD International Conference on Knowledge Discovery&Data Mining, August 2018, pp.2457-2466.
[142] Morton J, Wheeler T A, Kochenderfer M J. Analysis of recurrent neural networks for probabilistic modeling of driver behavior. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(5):1289-1298.
[143] Subasinghe S, Estoque R C, Murayama Y. Spatiotemporal analysis of urban growth using GIS and remote sensing:A case study of the Colombo Metropolitan Area, Sri Lanka. ISPRS International Journal of Geo-Information, 2016, 5(11):Article No. 197.
[144] Scheepens R, Hurter C, van de Wetering H, van Wijk J J. Visualization, selection, and analysis of traffic flows. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1):379-388.
[145] Voulis N, Warnier M, Brazier F M. Understanding spatiotemporal electricity demand at different urban scales:A data-driven approach. Applied Energy, 2018, 230:1157-1171.
[146] Padilla C M, Kihal-Talantikite W, Vieira V M, Rossello P, Le Nir G, Zmirou-Navier D, Deguen S. Air quality and social deprivation in four French metropolitan areas-A localized spatio-temporal environmental inequality analysis. Environmental Research, 2014, 134:315-324.
[147] Smith T E, Wu P. A spatio-temporal model of housing prices based on individual sales transactions over time. Journal of Geographical Systems, 2009, 11(4):333-355.
[148] Holly S, Pesaran M H, Yamagata T. The spatial and temporal diffusion of house prices in the UK. Journal of Urban Economics, 2011, 69(1):2-23.
[149] Dubé J, Legros D. A spatio-temporal measure of spatial dependence:An example using real estate data. Papers in Regional Science, 2013, 92(1):19-30.
[150] Chang H, Smallwood P M, Williams J, Nathans J. The spatio-temporal domains of Frizzled6 action in planar polarity control of hair follicle orientation. Developmental Biology, 2016, 409(1):181-193.
[151] Bindea G, Mlecnik B, Tosolini M et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity, 2013, 39(4):782-795.
[152] Lena P D, Nagata K, Baldi P F. Deep spatio-temporal architectures and learning for protein structure prediction. In Proc. the 26th Annual Conference on Neural Information Processing Systems, December 2012, pp.512-520.
[153] Cao C, Liu F, Tan H, Song D, Shu W, Li W, Zhou Y, Bo X, Xie Z. Deep learning and its applications in biomedicine. Genomics, Proteomics&Bioinformatics, 2018, 16(1):17-32.
[154] Mamoshina P, Vieira A, Putin E, Zhavoronkov A. Applications of deep learning in biomedicine. Molecular Pharmaceutics, 2016, 13(5):1445-1454.
[155] Lan K, Wang D T, Fong S, Liu L S, Wong K K, Dey N. A survey of data mining and deep learning in bioinformatics. Journal of Medical Systems, 2018, 42(8):Article No. 139.
[156] Brovelli M A, Minghini M, Zamboni G. Public participation in GIS via mobile applications. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114:306-315.
[157] Hsieh H P, Lin S D, Zheng Y. Inferring air quality for station location recommendation based on urban big data. In Proc. the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2015, pp.437-446.
[158] Liu Y, Pham T A N, Cong G, Yuan Q. An experimental evaluation of point-of-interest recommendation in locationbased social networks. Proceedings of the VLDB Endowment, 2017, 10(10):1010-1021.
[159] Zhao P, Xu X, Liu Y, Sheng V S, Zheng K, Xiong H. Photo2Trip:Exploiting visual contents in geo-tagged photos for personalized tour recommendation. In Proc. the 25th ACM International Conference on Multimedia, October 2017, pp.916-924.
[160] Jiang S, Qian X, Mei T, Fu Y. Personalized travel sequence recommendation on multi-source big social media. IEEE Transactions on Big Data, 2016, 2(1):43-56.
[161] Li Y, Yiu M L. Route-saver:Leveraging route APIs for accurate and efficient query processing at location-based services. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(1):235-249.
[162] Guo J, Wu Y, Zhang X, Zhang L, Chen W, Cao Z, Zhang L, Guo H. Finding the ‘faster’ path in vehicle routing. IET Intelligent Transport Systems, 2017, 11(10):685-694.
[163] Wang Z, Ye X. Social media analytics for natural disaster management. International Journal of Geographical Information Science, 2018, 32(1):49-72.
[164] Kong X, Li M, Ma K, Tian K, Wang M, Ning Z, Xia F. Big trajectory data:A survey of applications and services. IEEE Access, 2018, 6:58295-58306.
[165] Huang Z, Zhao Z, E S J, Yu C, Shan G, Li T, Cheng J, Sun J, Xiang Y. PRACE:A taxi recommender for finding passengers with deep learning approaches. In Proc. the 13th International Conference on Intelligent Computing, August 2017, pp.759-770.
[166] Li P, Yao J, Wang L, Lin X. SPOT:Selecting occuPations from trajectories. In Proc. the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, August 2017, pp.813-816.
[167] Wang Y, Qin K, Chen Y, Zhao P. Detecting anomalous trajectories and behavior patterns using hierarchical clustering from taxi GPS data. ISPRS International Journal of Geo-Information, 2018, 7(1):Article No. 25.
[168] Dabiri S, Heaslip K. Inferring transportation modes from GPS trajectories using a convolutional neural network. Transportation Research Part C:Emerging Technologies, 2018, 86:360-371.
[169] Zheng Y. Trajectory data mining:An overview. ACM Transactions on Intelligent Systems and Technology, 2015, 6(3):Article No. 29.
[170] Harvey F. To volunteer or to contribute locational information?Towards truth in labeling for crowdsourced geographic information. In Crowdsourcing Geographic Knowledge:Volunteered Geographic Information (VGI) in Theory and Practice, Sui D, Elwood S, Goodchild M (eds.), Springer, 2013, pp.31-42.
[171] Zhang C, Zhou G, Yuan Q, Zhuang H, Zheng Y, Kaplan L, Wang S, Han J. GeoBurst:Real-time local event detection in geo-tagged tweet streams. In Proc. the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, July 2016, pp.513-522.
[172] Martín Y, Li Z, Cutter S L. Leveraging Twitter to gauge evacuation compliance:Spatiotemporal analysis of Hurricane Matthew. PLoS ONE, 2017, 12(7):Article No. e0181701.
[173] Zhao L, Sun Q, Ye J, Chen F, Lu C T, Ramakrishnan N. Multi-task learning for spatio-temporal event forecasting. In Proc. the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2015, pp.1503-1512.
[174] Paul D, Li F, Teja M K, Yu X, Frost R. Compass:Spatio temporal sentiment analysis of US election what Twitter says!In Proc. the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2017, pp.1585-1594.
[175] Steiger E, Albuquerque J P, Zipf A. An advanced systematic literature review on spatiotemporal analyses of Twitter data. Transactions in GIS, 2015, 19(6):809-834.
[176] Khalid S, Shoaib F, Qian T, Rui Y, Bari A I, Sajjad M, Shakeel M, Wang J. Network constrained spatio-temporal hotspot mapping of crimes in Faisalabad. Applied Spatial Analysis and Policy, 2018, 11(3):599-622.
[177] Yu C H, Ding W, Chen P, Morabito M. Crime forecasting using spatio-temporal pattern with ensemble learning. In Proc. the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining, May 2014, pp.174-185.
[178] von Landesberger T, Brodkorb F, Roskosch P, Andrienko N, Andrienko G, Kerren A. MobilityGraphs:Visual analysis of mass mobility dynamics via spatio-temporal graphs and clustering. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1):11-20.
[179] Bak P, Ship H, Yaeli A, Nardi Y, Packer E, Saadoun G, Bnayahu J, Peterfreund L. Visual analytics for movement behavior in traffic and transportation. IBM Journal of Research and Development, 2015, 59(2/3):Article No. 10.
[180] Yu C H, Ding W, Morabito M, Chen P. Hierarchical spatiotemporal pattern discovery and predictive modeling. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(4):979-993.
[181] Guo C, Yang B, Hu J, Jensen C. Learning to route with sparse trajectory sets. In Proc. the 34th IEEE International Conference on Data Engineering, April 2018, pp.1073-1084.
[182] Idé T, Sugiyama M. Trajectory regression on road networks. In Proc. the 35th AAAI Conference on Artificial Intelligence, August 2011, Article No. 32.
[183] Yang B, Kaul M, Jensen C S. Using incomplete information for complete weight annotation of road networks. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5):1267-1279.
[184] Deng D, Shahabi C, Demiryurek U, Zhu L, Yu R, Liu Y. Latent space model for road networks to predict timevarying traffic. In Proc. the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2016, pp.1525-1534.
[185] Hu J, Guo C, Yang B, Jensen C S. Stochastic weight completion for road networks using graph convolutional networks. In Proc. the 34th IEEE International Conference on Data Engineering, April 2019, pp.1274-1285.
[186] Henriksen H J, Roberts M J, Keur P, Harjanne A, Egilson D, Alfonso L. Participatory early warning and monitoring systems:A Nordic framework for web-based flood risk management. International Journal of Disaster Risk Reduction, 2018, 31:1295-1306.
[187] Karpatne A, Atluri G, Faghmous J H, Steinbach M, Banerjee A, Ganguly A, Shekhar S, Samatova N, Kumar V. Theory-guided data science:A new paradigm for scientific discovery from data. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(10):2318-2331.
[188] Faghmous J H, Frenger I, Yao Y, Warmka R, Lindell A, Kumar V. A daily global mesoscale ocean eddy dataset from satellite altimetry. Scientific Data, 2015, 2:Article No. 150028.
[189] Khandelwal A, Karpatne A, Marlier M E, Kim J, Lettenmaier D P, Kumar V. An approach for global monitoring of surface water extent variations in reservoirs using MODIS data. Remote Sensing of Environment, 2017, 202:113-128.
[1] Jun-Feng Fan, Mei-Ling Wang, Chang-Liang Li, Zi-Qiang Zhu, and Lu Mao. Intent-Slot Correlation Modeling for Joint Intent Prediction and Slot Filling [J]. Journal of Computer Science and Technology, 2022, 37(2): 309-319.
[2] Mohammad Y. Mhawish, Manjari Gupta. Predicting Code Smells and Analysis of Predictions: Using Machine Learning Techniques and Software Metrics [J]. Journal of Computer Science and Technology, 2020, 35(6): 1428-1445.
[3] Yue-Huan Wang, Ze-Nan Li, Jing-Wei Xu, Ping Yu, Taolue Chen, Xiao-Xing Ma. Predicted Robustness as QoS for Deep Neural Network Models [J]. Journal of Computer Science and Technology, 2020, 35(5): 999-1015.
[4] Sara Elmidaoui, Laila Cheikhi, Ali Idri, Alain Abran. Machine Learning Techniques for Software Maintainability Prediction: Accuracy Analysis [J]. Journal of Computer Science and Technology, 2020, 35(5): 1147-1174.
[5] Qiang Zhou, Jing-Jing Gu, Chao Ling, Wen-Bo Li, Yi Zhuang, Jian Wang. Exploiting Multiple Correlations Among Urban Regions for Crowd Flow Prediction [J]. Journal of Computer Science and Technology, 2020, 35(2): 338-352.
[6] Yu-Qi Li, Li-Quan Xiao, Jing-Hua Feng, Bin Xu, Jian Zhang. AquaSee: Predict Load and Cooling System Faults of Supercomputers Using Chilled Water Data [J]. Journal of Computer Science and Technology, 2020, 35(1): 221-230.
[7] Xiang Chen, Dun Zhang, Zhan-Qi Cui, Qing Gu, Xiao-Lin Ju. DP-Share: Privacy-Preserving Software Defect Prediction Model Sharing Through Differential Privacy [J]. Journal of Computer Science and Technology, 2019, 34(5): 1020-1038.
[8] Zhou Xu, Shuai Pang, Tao Zhang, Xia-Pu Luo, Jin Liu, Yu-Tian Tang, Xiao Yu, Lei Xue. Cross Project Defect Prediction via Balanced Distribution Adaptation Based Transfer Learning [J]. Journal of Computer Science and Technology, 2019, 34(5): 1039-1062.
[9] Li-Hua Yin, Huiwen Liu. Searching Activity Trajectories with Semantics [J]. Journal of Computer Science and Technology, 2019, 34(4): 775-794.
[10] De-Fu Lian, Qi Liu. Jointly Recommending Library Books and Predicting Academic Performance: A Mutual Reinforcement Perspective [J]. , 2018, 33(4): 654-667.
[11] Chao Ni, Wang-Shu Liu, Xiang Chen, Qing Gu, Dao-Xu Chen, Qi-Guo Huang. A Cluster Based Feature Selection Method for Cross-Project Software Defect Prediction [J]. , 2017, 32(6): 1090-1107.
[12] Wei-Qing, Liu Jing Li. An Approach to Automatic Performance Prediction for Cloud-enhanced Mobile Applications with Sparse Data [J]. , 2017, 32(5): 936-956.
[13] Meng Chen, Xiaohui Yu, Yang Liu. Mining Object Similarity for Predicting Next Locations [J]. , 2016, 31(4): 649-660.
[14] Xu-Meng Wang, Tian-Ye Zhang, Yu-Xin Ma, Jing Xia, Wei Chen. A Survey of Visual Analytic Pipelines [J]. , 2016, 31(4): 787-804.
[15] Xi-Te Wang, De-Rong Shen, Mei Bai, Tie-Zheng Nie, Yue Kou, Ge Yu. An Efficient Algorithm for Distributed Outlier Detection in Large Multi-Dimensional Datasets [J]. , 2015, 30(6): 1233-1248.
Full text



[1] Fan Zhihua;. Vectorization for Loops with Three-Forked Jumps[J]. , 1988, 3(3): 186 -202 .
[2] Chen Guoliang;. A Partitioning Selection Algorithm on Multiprocessors[J]. , 1988, 3(4): 241 -250 .
[3] Feng Yin; Wang Kaizhu; Chang Yadong; Li Zhongrong;. CQAES,a Chinese Question Answer Experimental System[J]. , 1988, 3(4): 317 -319 .
[4] Zhang Bo; Zhang Tian; Zhang Jianwei; Zhang Ling;. Motion Planning for Robots with Topological Dimension Reduction Method[J]. , 1990, 5(1): 1 -16 .
[5] Cheng Jinsong;. A Parallel Algorithm for Finding Roots of a Complex Polynomial[J]. , 1990, 5(1): 71 -81 .
[6] Liu Weiyi;. An Efficient Algorithm for Processing Multi-Relation Queries in Relational Databases[J]. , 1990, 5(3): 236 -240 .
[7] Zhang Xinzhong; Yan Changde; Liu Xiuying;. Feature Point Method of Chinese Character Recognition and Its Application[J]. , 1990, 5(4): 305 -311 .
[8] Xu Zhiming;. Discrete Interpolation Surface[J]. , 1990, 5(4): 329 -332 .
[9] Jin Zhiquan; Liu Chengfei; Sun Zhongxiu; Zhou Xiaofang; Chen Peipei; Gu Jianming;. Design and Implementation of a Heterogeneous Distributed Database System[J]. , 1990, 5(4): 363 -373 .
[10] Zhuang Nan;. Design of Quaternary ECL Q Gate[J]. , 1991, 6(1): 32 -36 .

ISSN 1000-9000(Print)

CN 11-2296/TP

Editorial Board
Author Guidelines
Journal of Computer Science and Technology
Institute of Computing Technology, Chinese Academy of Sciences
P.O. Box 2704, Beijing 100190 P.R. China
  Copyright ©2015 JCST, All Rights Reserved