|
Journal of Computer Science and Technology ›› 2021, Vol. 36 ›› Issue (2): 310-322.doi: 10.1007/s11390-021-0844-8
Special Issue: Emerging Areas
• Special Section on AI and Big Data Analytics in Biology and Medicine • Previous Articles Next Articles
Li-Gang Gao1,2, Meng-Yun Yang1,2,3, and Jian-Xin Wang1,2,*, Senior Member, CCF, IEEE, Member, ACM
[1] Morgan S, Grootendorst P, Lexchin J, Cunningham C, Greyson D. The cost of drug development:A systematic review. Health Policy, 2011, 100(1):4-17. DOI:10.1016/j.healthpol.2010.12.002. [2] Pushpakom S P, Iorio F, Eyers P A et al. Drug repurposing:Progress, challenges and recommendations. Nature Reviews Drug Discovery, 2019, 18(1):41-58. DOI:10.1038/nrd.2018.168. [3] Drews J. Drug discovery:A historical perspective. Science, 2000, 287(5460):1960-1964. DOI:10.1126/science.287.5460.1960. [4] Mohs R C, Greig N H. Drug discovery and development:Role of basic biological research. Alzheimer's & Dementia:Translational Research & Clinical Interventions, 2017, 3(4):651-657. DOI:10.1016/j.trci.2017.10.005. [5] Wang Y, Bryant S H, Cheng T, Wang J, Gindulyte A, Shoemaker B, Thiessen P, He S, Zhang J. PubChem BioAssay:2017 update. Nucleic Acids Research, 2017, 45(D1):D955-D963. DOI:10.1093/nar/gkw1118. [6] Whitebread S, Hamon J, Bojanic D, Urban L. Keynote review:in vitro safety pharmacology profiling:An essential tool for successful drug development. Drug Discovery Today, 2005, 10(21):1421-1433. DOI:10.1016/S1359-6446(05)03632-9. [7] Keiser M, Roth B, Armbruster N, Ernsberger P, Irwin J, Shoichet B. Relating protein pharmacology by ligand chemistry. Nature Biotechnology, 2007, 25(2):197-206. DOI:10.1038/nbt1284. [8] Li H, Gao Z, Kang L, Zhang H. TarFisDock:A web server for identifying drug targets with docking approach. Nucleic Acids Research, 2006, 34(2):W219-W224. DOI:10.1093/nar/gkl114. [9] Ezzat A, Wu M, Li X, Kwoh C. Computational prediction of drug-target interactions using chemogenomic approaches:An empirical survey. Briefings in Bioinformatics, 2019, 20(4):1337-1357. DOI:10.1093/bib/bby002. [10] Bleakley K, Yamanishi Y. Supervised prediction of drugtarget interactions using bipartite local models. Bioinformatics, 2009, 25(18):2397-2403. DOI:10.1093/bioinformatics/btp433. [11] Mei J, Kwoh C, Yang P, Li X, Zheng J. Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics, 2013, 29(2):238-245. DOI:10.1093/bioinformatics/bts670. [12] Twan V, Elena M, Peter C. Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PLoS ONE, 2013, 8(6):Article No. e66952. DOI:10.1371/journal.pone.0066952. [13] Yan C, Wang J, Lan W et al. SDTRLS:Predicting drugtarget interactions for complex diseases based on chemical substructures. Complexity, 2017, 2017:Article No. 2713280. DOI:10.1155/2017/2713280. [14] Wang W, Yang S, Li J. Drug target predictions based on heterogeneous graph inference. In Proc. the 2013 Pacific Symposium on Biocomputing, January 2013, pp.53-64. DOI:10.1142/97898144479730006. [15] Wang L, You Z, Chen X. RFDT:A rotation forest-based predictor for predicting drug-target interactions using drug structure and protein sequence information. Current Protein and Peptide Science, 2018, 19(5):445-454. DOI:10.2174/1389203718666161114111656. [16] Olayan R, Ashoor H, Bajic V. DDR:Efficient computational method to predict drug-target interactions using graph mining and machine learning approaches. Bioinformatics, 2018, 34(7):1164-1173. DOI:10.1093/bioinformatics/btx731. [17] Huang Y, You Z, Chen X. A systematic prediction of drug-target interactions using molecular fingerprints and protein sequences. Current Protein and Peptide Science, 2018, 19(5):468-478. DOI:10.2174/1389203718666161122103057. [18] Yang M, Li Y, Wang J. Feature and nuclear norm minimization for matrix completion. IEEE Transactions on Knowledge and Data Engineering. DOI:10.1109/TKDE.2020.3005978. [19] Yang M, Luo H, Li Y, Wu F X, Wang J. Overlap matrix completion for predicting drug-associated indications. PLoS Computational Biology, 2019, 15(12):Article No. e1007541. DOI:10.1371/journal.pcbi.1007541. [20] Yang M, Luo H, Li Y, Wang J. Drug repositioning based on bounded nuclear norm regularization. Bioinformatics, 2019, 35(14):i455-i463. DOI:10.1093/bioinformatics/btz331. [21] Gönen M. Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics, 2012, 28(18):2304-2310. DOI:10.1093/bioinformatics/bts360. [22] Zheng X, Ding H, Mamitsuka H, Zhu S. Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In Proc. the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2013, pp.1025-1033. DOI:10.1145/2487575.2487670. [23] Liu Y, Wu M, Miao C, Zhao P, Li X. Neighborhood regularized logistic matrix factorization for drugtarget interaction prediction. PLoS Computational Biology, 2016, 12(2):Article No. e1004760. DOI:10.1371/journal.pcbi.1004760. [24] Ezzat A, Zhao P, Wu M, Li X, Kwoh C. Drug-target interaction prediction with graph regularized matrix factorization. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2016, 14(3):646-656. DOI:10.1109/TCBB.2016.2530062. [25] Mohamed S, Nováek V, Nounu A. Discovering protein drug targets using knowledge graph embeddings. Bioinformatics, 2020, 36(2):603-610. DOI:10.1093/bioinformatics/btz600. [26] Thafar M, Olayan R, Ashoor H et al. DTiGEMS+:Drug-target interaction prediction using graph embedding, graph mining, and similarity-based techniques. Journal of Cheminformatics, 2020, 12(1):Article No. 44. DOI:10.1186/s13321-020-00447-2. [27] Wang B, Mezlini A, Demir F et al. Similarity network fusion for aggregating data types on a genomic scale. Nature Methods, 2014, 11(3):333-337. DOI:10.1038/nmeth.2810. [28] Yang M, Wu G, Zhao Q, Li Y, Wang J. Computational drug repositioning based on multi-similarities bilinear matrix factorization. Briefings in Bioinformatics. DOI:10.1093/bib/bbaa267. [29] Zhang L, Zhang S. A general joint matrix factorization framework for data integration and its systematic algorithmic exploration. IEEE Transactions on Fuzzy Systems, 2020, 28(9):1971-1983. DOI:10.1109/TFUZZ.2019.2928518. [30] Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 2008, 24(13):i232-i240. DOI:10.1093/bioinformatics/btn162. [31] Kanehisa M, Goto S, Hattori M, Aoki-Knoshita K, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M. From genomics to chemical genomics:New developments in KEGG. Nucleic Acids Research, 2006, 34:D354-D357. DOI:10.1093/nar/gkj102. [32] Schomburg I, Chang A, Ebeling C et al. BRENDA, the enzyme database:Updates and major new developments. Nucleic Acids Research, 2004, 32(suppl 1):D431-D433. DOI:10.1093/nar/gkh081. [33] Günther S, Kuhn M, Dunkel M et al. SuperTarget and matador:Resources for exploring drug-target relationships. Nucleic Acids Research, 2008, 36(suppl 1):D919-D922. DOI:10.1093/nar/gkm862. [34] Wishart D, Knox C, Guo A, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M. DrugBank:A knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Research, 2008, 36(suppl 1):D901-D906. DOI:0.1093/nar/gkm958. [35] Hattori M, Okuno Y, Goto S, Kanehisa M. Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. Journal of the American Chemical Society, 2003, 125(39):11853-11865. DOI:10.1021/ja036030u. [36] Gaulton A, Bellis L J, Bento A P et al. ChEMBL:A large-scale bioactivity database for drug discovery. Nucleic Acids Research, 2012, 40(D1):D1100-D1107. DOI:10.1093/nar/gkr777. [37] Sayers E W, Agarwala R, Bolton E E et al. Database resources of the national center for biotechnology information. Nucleic Acids Research, 2019, 47(D1):D23-D28. DOI:10.1093/nar/gky1069. [38] Gürgen S G, Yazıcı G N, Gözükara C et al. Metoclopramide use to induce lactation can alter BDNF and DRD2 in the prefrontal cortex of offspring. Journal of Chemical Neuroanatomy, 2020, 109:Article No. 101844. DOI:10.1016/j.jchemneu.2020.101844. [39] Naveen M, Patil A N, Pattanaik S et al. ABCB1 and DRD3 polymorphism as a response predicting biomarker and tool for pharmacogenetically guided clozapine dosing in Asian Indian treatment resistant schizophrenia patients. Asian Journal of Psychiatry, 2020, 48:Article No. 101918. DOI:10.1016/j.ajp.2019.101918. |
[1] | ZHANG Xiaolong (张晓龙) and Masayuki Numao. Toward Effective Knowledge Acquisition with First-Order Logic Induction [J]. , 2002, 17(5): 0-0. |
|
|