|
Journal of Computer Science and Technology ›› 2022, Vol. 37 ›› Issue (1): 252-265.doi: 10.1007/s11390-021-0655-y
Special Issue: Artificial Intelligence and Pattern Recognition; Theory and Algorithms
• Regular Paper • Previous Articles Next Articles
Xiao-Wei Feng (冯晓伟), Xiang-Yu Kong* (孔祥玉), Chuan He (何川), and Dong-Hui Xu (徐东辉)
[1] Ma H W, Lin Y Z, Nie Z H. Physical interpretation of principal component analysis for structural dynamics through string vibration. International Journal of Structural Stability & Dynamics, 2019, 19(9): Article No.1950109. DOI: 10.1142/S0219455419501098. [2] Du B Y, Kong X Y, Feng X W. Generalized principal component analysis-based subspace decomposition of fault deviations and its application to fault reconstruction. IEEE Access, 2020, 8: 34177-34186. DOI: 10.1109/ACCESS.2020.2971507. [3] Yuan G, Shen L, Zheng W S. A decomposition algorithm for the sparse generalized eigenvalue problem. In Proc. the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2020, pp.6113-6122. DOI: 10.1109/CVPR.2019.00627. [4] Ma J, Yuan Y. Dimension reduction of image deep feature using PCA. Journal of Visual Communication & Image Representation, 2019, 63: Article No.102578. DOI: 10.1016/j.jvcir.2019.102578. [5] Omar H M, Morsli M, Yaichi S. Image compression using principal component analysis. In Proc. the 2nd International Conference on Mathematics and Information Technology, Feb. 2020, pp.226-231. DOI: 10.1109/ICMIT47780.2020.9047014. [6] Harmouche J, Delpha C, Diallo D. Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: Part II. Signal Processing, 2015, 109: 334-344. DOI: 10.1016/j.sigpro.2014.06.023. [7] Yu D, Wang M, Cheng X. A method for the compound fault diagnosis of gearboxes based on morphological component analysis. Measurement, 2016, 91: 519-531. DOI: 10.1016/j.measurement.2016.05.087. [8] Shahbazpanahi S, Gershman A, Luo Z Q, Wong K M. Robust adaptive beamforming for general-rank signal models. IEEE Transactions on Signal Processing, 2003, 51(9): 2257-2269. DOI: 10.1109/TSP.2003.815395. [9] Morgan D R. Adaptive algorithms for solving generalized eigenvalue signal enhancement problems. Signal Processing, 2004, 84(6): 957-968. DOI: 10.1016/j.sigpro.2004.02.002. [10] Jian Y, Xi C, Xi H. Fast adaptive extraction algorithm for multiple principal generalized eigenvectors. International Journal of Intelligent Systems, 2013, 28(3): 289-306. DOI: 10.1002/int.21570. [11] Chu D, Liao L Z, Ng M K P, Wang X. Incremental linear discriminant analysis: A fast algorithm and comparisons. IEEE Transactions on Neural Networks & Learning Systems, 2015, 26(11): 2716-2735. DOI: 10.1109/TNNLS.2015.2391201. [12] Chen Y, Tong S, Cong F, Xu J. Symmetrical singular value decomposition representation for pattern recognition. Neurocomputing, 2016, 214: 143-154. DOI: 10.1016/j.neucom.2016.05.075. [13] Wang J, Shi D, Cheng D, Zhang Y, Gao J. LRSR: Low-rank-sparse representation for subspace clustering. Neurocomputing, 2016, 214: 1026-1037. DOI: 10.1016/j.neucom.2016.07.015. [14] Peng X, Tang H, Zhang L. A unified framework for representation-based subspace clustering of out-of-sample and large-scale data. IEEE Transactions on Neural Networks & Learning Systems, 2015, 27(12): 2499-2512. DOI: 10.1109/TNNLS.2015.2490080. [15] Abbass H H, Mousa Z R. A proposed method of face recognition based on edge detection and SVD. Journal of Engineering & Applied Sciences, 2019, 14(18): 6560-6566. DOI: 10.36478/jeasci.2019.6560.6566. [16] Peng D, Yi Z, Xiang Y. A unified learning algorithm to extract principal and minor components. Digital Signal Processing, 2009, 19(4): 640-649. DOI: 10.1016/j.dsp.2009.03.004. [17] Cirrincione G, Cirrincione M, Herault J, Van Huffel S. The MCA EXIN neuron for the minor component analysis. IEEE Transactions on Neural Networks, 2002, 13(1): 160-187. DOI: 10.1109/72.977295. [18] Kong X Y, Hu C, Ma H G. A unified self-stabilizing neural network algorithm for principal and minor components extraction. IEEE Transactions on Neural Networks & Learning Systems, 2012, 23(2): 185-198. DOI: 10.1109/TNNLS.2011.2178564. [19] Ben X, Meng W, Wang K, Yan R. An adaptive neural networks formulation for the two-dimensional principal component analysis. Neural Computing & Applications, 2016, 27(5): 1245-1261. DOI: 10.1007/s00521-015-1922-z. [20] Nguyen T D, Yamada I. A unified convergence analysis of normalized PAST algorithms for estimating principal and minor components. Signal Processing, 2013, 93(1): 176-184. DOI: 10.1016/j.sigpro.2012.07.020. [21] Nguyen T D, Yamada I. Adaptive normalized quasi-Newton algorithms for extraction of generalized eigen-pairs and their convergence analysis. IEEE Transactions on Signal Processing, 2013, 61(6): 1404-1418. DOI: 10.1109/TSP.2012.2234744. [22] Feng X W, Kong X W, Ma H G, Si X S. A novel unified and self-stabilizing algorithm for generalized eigenpairs extraction. IEEE Transactions on Neural Networks & Learning Systems, 2017, 28(12): 3032-3044. DOI: 10.1109/TNNLS.2016.2614130. [23] Ouyang S, Hua Y. Bi-iterative least square versus bi-iterative singular value decomposition for subspace tracking. In Proc. the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, May 2004, pp.353-356. DOI: 10.1109/ICASSP.2004.1326267. [24] Feng D Z, Bao Z, Zhang X D. A cross-associative neural network for SVD of nonsquared data matrix in signal processing. IEEE Transactions on Neural Networks, 2001, 12(5): 1215-1221. DOI: 10.1109/72.950149. [25] Hasan M A. Low-rank approximations with applications to principal singular component learning systems. In Proc. the 47th IEEE Conference on Decision & Control, Jan. 2009, pp.3293-3298. DOI: 10.1109/CDC.2008.4739112. [26] Feng X W, Kong X Y, Xu D H, Qin J Q. A fast and effective principal singular subspace tracking algorithm. Neurocomputing, 2017, 267: 201-209. DOI: 10.1016/j.neucom.2017.06.006. [27] Peng D Z, Yi Z. Convergence analysis of a deterministic discrete time system of Feng's MCA learning algorithm. IEEE Transactions on Signal Processing, 2006, 54(9): 3626-3632. DOI: 10.1109/TSP.2006.877662. [28] Oja E. A simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 1982, 15(3):267-273. DOI: 10.1007/BF00275687. [29] Ljung L. Analysis of recursive stochastic algorithms. IEEE Transactions on Automatic Control, 1977, 22(4): 551-575. DOI: 10.1109/TAC.1977.1101561. [30] Zufiria P J. On the discrete-time dynamics of the basic Hebbian neural network node. IEEE Transactions on Neural Networks, 2002, 13(6): 1342-1352. DOI: 10.1109/TNN.2002.805752. [31] Mao Y. Global convergence analysis of a self-stabilizing MCA learning algorithm. Neurocomputing, 2005, 67: 321-327. DOI: 10.1016/j.neucom.2005.01.002. [32] Zhang Y, Mao Y, Jian C L, Kok K T. Convergence analysis of a deterministic discrete time system of Oja's PCA learning algorithm. IEEE Transactions on Neural Networks, 2005, 16(6): 1318-1328. DOI: 10.1109/TNN.2005.852236. [33] Peng D Z, Yi Z. Global convergence of an adaptive minor component extraction algorithm. Chaos Solitons & Fractals, 2008, 35(3): 550-561. DOI: 10.1016/j.chaos.2006.05.051. [34] Gao Y B, Kong X Y, Hu C H, Zhang H H, Hou L A. Convergence analysis of Möller algorithm for estimating minor component. Neural Processing Letters, 2015, 42(2): 355-368. DOI: 10.1007/s11063-014-9360-y. [35] Kong X Y, Hu C, Duan Z S. Deterministic discrete-time system for the analysis of iterative algorithms. In Principal Component Analysis Networks and Algorithms, Kong X Y, Hu C, Duan Z S (eds.), Springer, 2017, pp.149-184. DOI: 10.1007/978-981-10-2915-8-6. [36] Peng D Z, Yi Z. Dynamics of generalized PCA and MCA learning algorithms. IEEE Transactions on Neural Networks, 2007, 18(6): 1777-1784. DOI: 10.1109/TNN.2007.895821. [37] Tuan D N, Noriyuki T, Isao Y. An adaptive extraction of generalized eigensubspace by using exact nested orthogonal complement structure. Multidimensional Systems & Signal Processing, 2013, 24(3): 457-483. DOI: 10.1007/s11045-012-0172-9. [38] Karser A, Schenck W, Möller R. Coupled singular value decomposition of a cross-covariance matrix. International Journal of Neural Systems, 2010, 20(4): 293-318. DOI: 10.1142/S0129065710002437. [39] Feng D Z, Zhang X D, Bao Z. A neural network learning for adaptively extracting cross-correlation features between two high-dimensional data streams. IEEE Transactions on Neural Networks, 2004, 15(6): 1541-1554. DOI: 10.1109/TNN.2004.838523. [40] Kong X Y, Ma H G, An Q S, Zhang Q. An effective neural learning algorithm for extracting cross-correlation feature between two high-dimensional data streams. Neural Processing Letters, 2015, 42(2): 459-477. DOI: 10.1007/s11063-014-9367-4. [41] Diamantaras K, Kung S Y. Cross-correlation neural network models. IEEE Transactions on Signal Processing, 1994, 42(11): 3218-3223. DOI: 10.1109/78.330379. [42] Haykin S. Adaptive Filter Theory (5th edition). Pearson, 2002. [43] Oja E, Karhunen J. On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix. Journal of Mathematical Analysis & Applications, 1985, 106(1): 69-84. DOI: 10.1016/0022-247X(85)90131-3. [44] Stewart G W, Sun J G. Matrix Perturbation Theory (1st edition). Academic Press, 1990. |
No related articles found! |
|
|