|
Journal of Computer Science and Technology ›› 2022, Vol. 37 ›› Issue (2): 320-329.doi: 10.1007/s11390-021-1174-6
Special Issue: Artificial Intelligence and Pattern Recognition
• Artificial Intelligence and Pattern Recognition • Previous Articles Next Articles
Xin-Feng Wang1 (王新峰), Xiang Zhou1 (周翔), Jia-Hua Rao1 (饶家华), Zhu-Jin Zhang1 (张柱金), and Yue-Dong Yang1,2,* (杨跃东), Member, CCF
[1] Francis R C. Epigenetics: The Ultimate Mystery of Inheritance. WW Norton & Company, 2011. [2] Ye P, Luan Y, Chen K, Liu Y, Xiao C, Xie Z. MethSMRT: An integrative database for DNA N6-methyladenine and N4-methylcytosine generated by single-molecular real-time sequencing. Nucleic Acids Research, 2016, 45(D1): D85-D89. DOI: 10.1093/nar/gkw950. [3] Kulis M, Esteller M. DNA methylation and cancer. Advances in Genetics, 2010, 70(22): 27-56. DOI: 10.1016/B978-0-12-380866-0.60002-2. [4] Gerd P. Defining driver DNA methylation changes in human cancer. International Journal of Molecular Sciences, 2018, 19(4): Article No.~1166. DOI: 10.3390/ijms19041166. [5] Jouinot A, Assie G, Libe R et al. DNA methylation is an independent prognostic marker of survival in adrenocortical cancer. The Journal of Clinical Endocrinology & Metabolism, 2016, 102(3): 923-932. DOI: 10.1210/jc.2016-3205. [6] Zhang G, Huang K C, Xu Z et al. Across-platform imputation of DNA methylation levels incorporating nonlocal information using penalized functional regression. Genetic Epidemiology, 2016, 40(4): 333-340. DOI: 10.1002/gepi.21969. [7] Troyanskaya O, Cantor M, Sherlock G et al. Missing value estimation methods for DNA microarrays. Bioinformatics, 2001, 17(6): 520-525. DOI: 10.1093/bioinformatics/17.6.520. [8] Guttorp P, Fuentes M, Sampson P. Using transforms to analyze space-time processes. In Statistical Methods for Spatio-Temporal Systems, Finkenstadt B, Held L, Isham V (eds.), CRC/Chapman, 2006, pp.77-150. [9] Josse J, Husson F. Handling missing values in exploratory multivariate data analysis methods. Journal de la Société Française de Statistique, 2012, 153(2): 77-99. [10] Di Lena P, Sala C, Prodi A, Nardini C. Missing value estimation methods for DNA methylation data. Bioinformatics, 2019, 35(19): 3786-3793. DOI: 10.1093/bioinformatics/btz134. [11] Stekhoven D J, Bühlmann P. MissForest-Non-parametric missing value imputation for mixed-type data. Bioinformatics, 2012, 28(1): 112-118. DOI: 10.1093/bioinformatics/btr597. [12] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-444. DOI: 10.1038/nature14539. [13] Heffernan R, Paliwal K, Lyons J et al. Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning. Scientific Reports, 2015, 5: Article No.11476. DOI: 10.1038/srep11476. [14] Chen J, Zheng S, Zhao H, Yang Y. Structure-aware protein solubility prediction from sequence through graph convolutional network and predicted contact map. Journal of Cheminformatics, 2021, 13(1): Article No.~7. DOI: 10.1186/s13321-021-00488-1. [15] Senior A W, Evans R, Jumper J et al. Improved protein structure prediction using potentials from deep learning. Nature, 2020, 577(7792): 706-710. DOI: 10.1038/s41586-019-1923-7. [16] Ching T, Himmelstein D S, Beaulieu-Jones B K et al. Opportunities and obstacles for deep learning in biology and medicine. Journal of the Royal Society Interface, 2018, 15(141): Article No.~20170387. DOI: 10.1098/rsif.2017.0387. [17] Zheng S, Li Y, Chen S, Xu J, Yang Y. Predicting drug-protein interaction using quasi-visual question answering system. Nature Machine Intelligence, 2020, 2(2): 134-140. DOI: 10.1038/s42256-020-0152-y. [18] Zheng S, Rao J, Zhang Z, Xu J, Yang Y. Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of Chemical Information and Modeling, 2019, 60(1): 47-55. DOI: 10.1021/acs.jcim.9b00949. [19] Way G P, Greene C S. Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders. Pac Symp Biocomput, 2018, 23: 80-91. DOI: 10.1101/174474. [20] Titus A J, Wilkins O M, Bobak C A, Christensen B C. Unsupervised deep learning with variational autoencoders applied to breast tumor genome-wide DNA methylation data with biologic feature extraction. https://www.biorxiv.org/content/10.1101/433763v5, Dec. 2021. DOI: 10.1101/433763. [21] Lv X, Chen Z, Lu Y, Yang Y. An end-to-end Oxford Nanopore basecaller using convolution-augmented transformer. In Proc. the 2020 IEEE International Conference on Bioinformatics and Biomedicine, Dec. 2020, pp.337-342. DOI: 10.1109/BIBM49941.2020.9313290. [22] Tian T, Wan J, Song Q, Wei Z. Clustering single-cell RNA-seq data with a model-based deep learning approach. Nature Machine Intelligence, 2019, 1(4): 191-198. DOI: 10.1038/s42256-019-0037-0. [23] Lopez R, Regier J, Cole M B, Jordan M I, Yosef N. Deep generative modeling for single-cell transcriptomics. Nature Methods, 2018, 15(12): 1053-1058. DOI: 10.1038/s41592-018-0229-2. [24] Zeng Y, Zhou X, Rao J, Lu Y, Yang Y. Accurately clustering single-cell RNA-seq data by capturing structural relations between cells through graph convolutional network. In Proc. the 2020 IEEE International Conference on Bioinformatics and Biomedicine, Dec. 2020, pp.519-522. DOI: 10.1109/BIBM49941.2020.9313569. [25] Zhou X, Chai H, Zeng Y, Zhao H, Luo C H, Yang Y. scAdapt: Virtual adversarial domain adaptation network for single cell RNA-seq data classification across platforms and species. Briefings in Bioinformatics, 2021, 22(6): Article No.~bbab281. DOI: 10.1093/bib/bbab281. [26] Zhang Z, Zhao Y, Liao X et al. Deep learning in omics: A survey and guideline. Briefings in Functional Genomics, 2019, 18(1): 41-57. DOI: 10.1093/bfgp/ely030. [27] The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature, 2020, 578(7793): 82-93. DOI: 10.1038/s41586-020-1969-6. [28] Li Y, Wang L, Wang J, Ye J, Reddy C K. Transfer learning for survival analysis via efficient L2, 1-Norm regularized cox regression. In Proc. the 2016 IEEE International Conference on Data Mining, Dec. 2016, pp.231-240. DOI: 10.1109/ICDM.2016.0034. [29] Yousefi S, Amrollahi F, Amgad M et al. Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models. Scientific Reports, 2017, 7(1): Article No.~11707. DOI: 10.1038/s41598-017-11817-6. [30] Yang X, Gao L, Zhang S. Comparative pan-cancer DNA methylation analysis reveals cancer common and specific patterns. Briefings in Bioinformatics, 2016, 18(5): 761-773. DOI: 10.1093/bib/bbw063. [31] Hoadley K A, Yau C, Wolf D M et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell, 2014, 158(4): 929-944. DOI: 10.1016/j.cell.2014.06.049. [32] Zhou X, Chai H, Zhao H, Luo C H, Yang Y. Imputing missing RNA-sequencing data from DNA methylation by using a transfer learning-based neural network. GigaScience, 2020, 9(7): Article No.~giaa076. DOI: 10.1093/gigascience/giaa076. [33] Wei L, Jin Z, Yang S, Xu Y, Zhu Y, Ji Y. TCGA-assembler 2: Software pipeline for retrieval and processing of TCGA/CPTAC data. Bioinformatics, 2017, 34(9): 1615-1617. DOI: 10.1093/bioinformatics/btx812. [34] Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 2010, 33(1): 1-22. [35] Van Belle V, Pelckmans K, Van Huffel S, Suykens J A. Support vector methods for survival analysis: A comparison between ranking and regression approaches. Artificial Intelligence in Medicine, 2011, 53(2): 107-118. DOI: 10.1016/j.artmed.2011.06.006. |
[1] | Hua-Peng Wei, Ying-Ying Deng, Fan Tang, Xing-Jia Pan, and Wei-Ming Dong. A Comparative Study of CNN- and Transformer-Based Visual Style Transfer [J]. Journal of Computer Science and Technology, 2022, 37(3): 601-614. |
[2] | Zheng Chen, Xiao-Nan Fang, and Song-Hai Zhang. Local Homography Estimation on User-Specified Textureless Regions [J]. Journal of Computer Science and Technology, 2022, 37(3): 615-625. |
[3] | Xiao-Zheng Xie, Jian-Wei Niu, Xue-Feng Liu, Qing-Feng Li, Yong Wang, Jie Han, and Shaojie Tang. DG-CNN: Introducing Margin Information into Convolutional Neural Networks for Breast Cancer Diagnosis in Ultrasound Images [J]. Journal of Computer Science and Technology, 2022, 37(2): 277-294. |
[4] | Xin Zhang, Siyuan Lu, Shui-Hua Wang, Xiang Yu, Su-Jing Wang, Lun Yao, Yi Pan, and Yu-Dong Zhang. Diagnosis of COVID-19 Pneumonia via a Novel Deep Learning Architecture [J]. Journal of Computer Science and Technology, 2022, 37(2): 330-343. |
[5] | Dan-Hao Zhu, Xin-Yu Dai, Jia-Jun Chen. Pre-Train and Learn: Preserving Global Information for Graph Neural Networks [J]. Journal of Computer Science and Technology, 2021, 36(6): 1420-1430. |
[6] | Yi Zhong, Jian-Hua Feng, Xiao-Xin Cui, Xiao-Le Cui. Machine Learning Aided Key-Guessing Attack Paradigm Against Logic Block Encryption [J]. Journal of Computer Science and Technology, 2021, 36(5): 1102-1117. |
[7] | Feng Wang, Guo-Jie Luo, Guang-Yu Sun, Yu-Hao Wang, Di-Min Niu, Hong-Zhong Zheng. Area Efficient Pattern Representation of Binary Neural Networks on RRAM [J]. Journal of Computer Science and Technology, 2021, 36(5): 1155-1166. |
[8] | Shao-Jie Qiao, Guo-Ping Yang, Nan Han, Hao Chen, Fa-Liang Huang, Kun Yue, Yu-Gen Yi, Chang-An Yuan. Cardinality Estimator: Processing SQL with a Vertical Scanning Convolutional Neural Network [J]. Journal of Computer Science and Technology, 2021, 36(4): 762-777. |
[9] | Songjie Niu, Shimin Chen. TransGPerf: Exploiting Transfer Learning for Modeling Distributed Graph Computation Performance [J]. Journal of Computer Science and Technology, 2021, 36(4): 778-791. |
[10] | Chen-Chen Sun, De-Rong Shen. Mixed Hierarchical Networks for Deep Entity Matching [J]. Journal of Computer Science and Technology, 2021, 36(4): 822-838. |
[11] | Yang Liu, Ruili He, Xiaoqian Lv, Wei Wang, Xin Sun, Shengping Zhang. Is It Easy to Recognize Baby's Age and Gender? [J]. Journal of Computer Science and Technology, 2021, 36(3): 508-519. |
[12] | Wei Du, Yu Sun, Hui-Min Bao, Liang Chen, Ying Li, Yan-Chun Liang. DeepHBSP: A Deep Learning Framework for Predicting Human Blood-Secretory Proteins Using Transfer Learning [J]. Journal of Computer Science and Technology, 2021, 36(2): 234-247. |
[13] | Yang-Jie Cao, Shuang Wu, Chang Liu, Nan Lin, Yuan Wang, Cong Yang, Jie Li. Seg-CapNet: A Capsule-Based Neural Network for the Segmentation of Left Ventricle from Cardiac Magnetic Resonance Imaging [J]. Journal of Computer Science and Technology, 2021, 36(2): 323-333. |
[14] | Zhang-Jin Huang, Xiang-Xiang He, Fang-Jun Wang, Qing Shen. A Real-Time Multi-Stage Architecture for Pose Estimation of Zebrafish Head with Convolutional Neural Networks [J]. Journal of Computer Science and Technology, 2021, 36(2): 434-444. |
[15] | Bo-Wei Zou, Rong-Tao Huang, Zeng-Zhuang Xu, Yu Hong, Guo-Dong Zhou. Language Adaptation for Entity Relation Classification via Adversarial Neural Networks [J]. Journal of Computer Science and Technology, 2021, 36(1): 207-220. |
|