SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Yuan Ping, Ying-Jie Tian, Ya-Jian Zhou, Yi-Xian Yang. Convex Decomposition Based Cluster Labeling Method for Support Vector Clustering[J]. Journal of Computer Science and Technology, 2012, (2): 428-442. DOI: 10.1007/s11390-012-1232-1 |
[1] |
Xu R, Wunsch D C. Hierarchical clustering. In Clustering,Hoboken: John Wiley&Sons, 2008.
|
[2] |
Ben-Hur A, Horn D, Siegelmann H T, Vapnik V N. Supportvector clustering. Journal of Machine Learning Research,2001, 2: 125-137.
|
[3] |
Schölkopf B, Platt J C, Shawe-Taylor J C, Smola AJ, Williamson R C. Estimating the support of a high-dimensional distribution. Neural Computation, 2001, 13(7):1443-1472.
|
[4] |
Tax D M J, Duin R P W. Support vector domain description.Pattern Recognition Letters, 1999, 20(11-13): 1191-1199.
|
[5] |
Burges C J C. A tutorial on support vector machines forpattern recognition. Data Mining and Knowledge Discovery,1998, 2(2): 121-167.
|
[6] |
Yang J H, Estivill-Castro V, Chalup S K. Support vector clus-tering through proximity graph modelling. In Proc. the 9thInternational Conference on Neural Information Processing(ICONIP 2002), Orchid Country Club, Singapore, Nov. 18-22, 2002, pp.898-903.
|
[7] |
Lee J, Lee D. An improved cluster labeling method for sup-port vector clustering. IEEE Transactions on Pattern Analy-sis and Machine Intelligence, 2005, 27(3): 461-464.
|
[8] |
Lee J, Lee D. Dynamic characterization of cluster structuresfor robust and inductive support vector clustering. IEEETransactions on Pattern Analysis and Machine Intelligence,2006, 28(11): 1869-1874.
|
[9] |
Lee D, Lee J. Equilibrium-based support vector machine forsemisupervised classification. IEEE Transactions on NeuralNetworks, 2007, 18(2): 578-583.
|
[10] |
Lee S-H, Daniels K M. Cone cluster labeling for support vec-tor clustering. In Proc. the 6th SIAM Conference on DataMining, Bethesda, Maryland, Apr. 20-22, 2006, pp.484-488.
|
[11] |
Varma C M B S, Asharaf S, Murty M N. Rough core vec-tor clustering. In Proc. the 2nd International Conferenceon Pattern Recognition and Machine Intelligence, Kolkata,India, Dec. 18-22, 2007, pp.304-310.
|
[12] |
Hsieh T W, Taur J S, Tao C W, Kung S Y. A kernel-basedcore growing clustering method. International Journal of In-telligent Systems, 2009, 24(4): 441-458.
|
[13] |
Ling P, Zhou C G, Zhou X. Improved support vector clus-tering. Eng. Applicat. Artificial Intelligence, 2010, 23(4):552-559.
|
[14] |
Ping Y, Zhou Y J, Yang Y X. A novel scheme for acceleratingsupport vector clustering. Computing and Infomatics, 2012,31(2): in press.
|
[15] |
Jung J H, Kim N, Lee J. Dynamic pattern denoising methodusing multi-basin system with kernels. Pattern Recognition,2011, 44(8): 1698-1707.
|
[16] |
Vapnik V. The Nature of Statistical Learning Theory. NewYork: Springer-Verlag, 1995.
|
[17] |
Jung K H, Lee D, Lee J. Fast support-based clustering methodfor large-scale problems. Pattern Recognition, 2010, 43(5):1975-1983.
|
[18] |
Lee D, Lee J. Dynamic dissimilarity measure for support-based clustering. IEEE Transactions on Knowledge and DataEngineering, 2010, 22(6): 900-905.
|
[19] |
Ben-Hur A, Horn D, Siegelmann H T, Vapnik V. A supportvector cluster method. In Proc. the 15th International Con-ference on Pattern Recognition, Barcelona, Spain, Sep. 3-7,2000, pp.724-727.
|
[20] |
Estivill-Castro V, Lee I. AMOEBA: Hierarchical clusteringbased on spatial proximity using Delaunay diagram. In Proc.the 9th Int. Symposium on Spatial Data Handling, Beijing,China, Aug. 10-12, 2000, pp.7a.26-7a.41.
|
[21] |
Estivill-Castro V, Lee I, Murray A T. Criteria on proximitygraphs for boundary extraction and spatial clustering. InProc. the 5th Pacific-Asia Conference on Knowledge Dis-covery and Data Mining (PAKDD2001), Hong Kong, China,Apr. 16-18, 2001, pp.348-357.
|
[22] |
Ban T, Abe S. Spatially chunking support vector clustering al-gorithm. In Proc. International Joint Conference on NeuralNetworks, Budapest, Hungary, July 25-29, 2004, pp.413-418.
|
[23] |
Puma-Villanueva W J, Bezerra G B, Lima C A M, Zuben FJ V. Improving support vector clustering with ensembles. InProc. International Joint Conference on Neural Networks,Montreal, Quebec, Canada, Jul. 31-Aug. 4, 2005, pp.13-15.
|
[24] |
Chiang J H, Hao P Y. A new kernel-based fuzzy clusteringapproach: Support vector clustering with cell growing. IEEETransactions on Fuzzy Systems, 2003, 11(4): 518-527.
|
[25] |
Wang F, Zhao B, Zhang C S. Linear time maximum marginclustering. IEEE Transactions on Neural Networks, 2010,21(2): 319-332.
|
[26] |
Peng J M, Mukherjee L, Singh V, Schuurmans D, Xu L L. Anefficient algorithm for maximal margin clustering. Journal ofGlobal Optimization, 2011, 2: 1-15. doi: 10.1007/s10898-011-9691-4.
|
[27] |
Lee S H, Daniels K. Gaussian kernel width selection and fastcluster labeling for support vector clustering. University ofMassachusetts, Lowell, Technical Report No. 2005-009, 2005.
|
[28] |
Lee C H, Yang H C. Construction of supervised and unsuper-vised learning systems for multilingual text categorization.Expert Systems with Applications, 2009, 36(2): 2400-2410.
|
[29] |
Lee D, Jung K H, Lee J. Constructing sparse kernel machinesusing attractors. IEEE Transactions on Neural Networks,2009, 20(4): 721-729.
|
[30] |
Hao P Y, Chiang J H, Tu Y K. Hierarchically SVM classi-fication based on support vector clustering method and itsapplication to document categorization. Expert Systems withApplications, 2007, 33(3): 627-635.
|
[31] |
Hocking T D, Joulin A, Bach F, Vert J P. Clusterpath: Analgorithm for clustering using convex fusion penalties. InProc. the 28th International Conference on Machine Learn-ing (ICML), Bellevue, WA, USA, Jun. 28-Jul. 2, 2011, pp.1-8.
|
[32] |
Shamir O, Tishby N. Stability and model selection in k-meansclustering. Machine Learning, 2010, 80(2-3): 213-243.
|
[33] |
Lee S H, Daniels K. Gaussian kernel width generator for sup-port vector clustering. In Proc. International Conferenceon Bioinformatics and Its Applications, Fort Lauderdale,Florida, USA, Dec. 16-19, 2004, pp.151-162.
|
[34] |
Boyd S, Vandenberghe L. Convex Optimization. Cambridge,7th edition, New York: Cambridge University Press, 2009.
|
[35] |
Li Y H, Maguire L. Selecting critical patterns based on localgeometrical and statistical information. IEEE Transactionson Pattern Analysis and Machine Intelligence, 2011, 33(6):1189-1201.
|
[36] |
Kpotufe S, von Luxburg U. Pruning nearest neighbor clustertrees. In Proc. the 28th International Conference on Ma-chine Learning (ICML 2011), Bellevue, USA, Jun. 28-Jul. 2,2011, pp.225-232.
|
[37] |
Kim H C, Lee J. Clustering based on gaussian processes. Neu-ral Computation, 2007, 19(11): 3088-3107.
|
[38] |
Camastra F, Verri A. A novel kernel method for clustering.IEEE Transactions on Pattern Analysis and Machine Intel-ligence, 2005, 27(5): 801-805.
|
[39] |
Frank A, Asuncion A. UCI machine learning repository.http://archive.ics.uci.edu/ml, 2010.
|
[40] |
Hubert L, Arabie P. Comparing partitions. Journal of Clas-sification, 1985, 2(1): 193-218.
|
[41] |
Wu M, Scholkopf B. A local learning approach for clustering.In Proc. the 20th Annual Conference on Advances Neural In-formation Processing Systems (NIPS 2007), Vancouver, B.C.,Canada, Dec. 4-7, 2006, pp.1529-1536.
|
[1] | Xin Li, Zhang-Jin Huang, Zhao Liu. A Geometric Approach for Multi-Degree Spline[J]. Journal of Computer Science and Technology, 2012, 27(4): 841-850. DOI: 10.1007/s11390-012-1268-2 |
[2] | Hsien-Hsi Hsieh, Chin-Chen Chang, Wen-Kai Tai, Han-Wei Shen. Novel Geometrical Voxelization Approach with Application to Streamlines[J]. Journal of Computer Science and Technology, 2010, 25(5): 895-904. DOI: 10.1007/s11390-010-1070-y |
[3] | JIANG Tianzi. Geometric Primitive Extraction by the Combination of Tabu Search and Subpixel Accuracy[J]. Journal of Computer Science and Technology, 1999, 14(1): 74-80. |
[4] | Wang Haohong, Wu Ruixun, Cai Shijie. A New Algorithm for Two-Dimensional Line Clipping via Geometric Transformation[J]. Journal of Computer Science and Technology, 1998, 13(5): 410-416. |
[5] | Gao Shuming, Peng Qunsheng. Hierarchical Geometric Constraint Model for Parametric Feature Based Modeling[J]. Journal of Computer Science and Technology, 1997, 12(3): 193-201. |
[6] | Yang Changgui, Chen Yuian, Sun Jiaghang. Advanced Geometric Modeler with Hybrid Representation[J]. Journal of Computer Science and Technology, 1996, 11(1): 1-8. |
[7] | L Wei, Liang Youdong. A New Representation and Algorithm for Constructing Convex Hulls in Higher Dim ensional Spaces[J]. Journal of Computer Science and Technology, 1992, 7(1): 1-5. |
[8] | Tian Jie. The Geometric Continuity of Rational Bezler Triangular Surfaces[J]. Journal of Computer Science and Technology, 1991, 6(4): 383-388. |
[9] | Lu Wei, Jin Tongguang, Liang Youdong. Geometric Modelling by Recursively Cutting Vertices[J]. Journal of Computer Science and Technology, 1989, 4(4): 363-373. |
[10] | Zhang Fuyan, Cai Shijie, Wang Yulan, Ju Zhengwen. The Geometric Modelling of Furniture Parts and Its Application[J]. Journal of Computer Science and Technology, 1989, 4(3): 236-244. |