We use cookies to improve your experience with our site.

Indexed in:

SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.

Submission System
(Author / Reviewer / Editor)
Najwa Altwaijry, Mohamed El Bachir Menai. Data Structures in Multi-Objective Evolutionary Algorithms[J]. Journal of Computer Science and Technology, 2012, 27(6): 1197-1210. DOI: 10.1007/s11390-012-1296-y
Citation: Najwa Altwaijry, Mohamed El Bachir Menai. Data Structures in Multi-Objective Evolutionary Algorithms[J]. Journal of Computer Science and Technology, 2012, 27(6): 1197-1210. DOI: 10.1007/s11390-012-1296-y

Data Structures in Multi-Objective Evolutionary Algorithms

Funds: This work was supported by the Research Center of College of Computer and Information Sciences, King Saud University, Saudi Arabia.
More Information
  • Received Date: April 13, 2011
  • Revised Date: February 06, 2012
  • Published Date: November 04, 2012
  • Data structures used for an algorithm can have a great impact on its performance, particularly for the solution of large and complex problems, such as multi-objective optimization problems (MOPs). Multi-objective evolutionary algorithms (MOEAs) are considered an attractive approach for solving MOPs, since they are able to explore several parts of the Pareto front simultaneously. The data structures for storing and updating populations and non-dominated solutions (archives) may affect the efficiency of the search process. This article describes data structures used in MOEAs for realizing populations and archives in a comparative way, emphasizing their computational requirements and general applicability reported in the original work.
  • [1]
    Horn J. Multicriterion decision making. In Handbook ofEvolutionary Computation, Back T, Fogel D, Michalewicz Z(eds.), Bristol, UK: IOP Publisher, 1997, pp.F1.9:1-F1.9:15.
    [2]
    Parks G T, Miller I. Selective breeding in a multiobjectivegenetic algorithm. In Lecture Notes in Computer Science1498, Eiben A E et al. (eds.), Amsterdam, Holland: Springer-Verlag, 1998, pp.250-259.
    [3]
    Bhanu B, Lee S. Genetic Learning for Adaptive Image Seg-mentation. Boston, USA: Kluwer Academic Publishers, 1994.
    [4]
    Viennet R, Fontiex C, Marc I. Multicriteria optimization us-ing a genetic algorithm for determining a Pareto set. Journalof Systems Science, 1996, 27(2): 255-260.
    [5]
    Laumanns M, Zitzler E, Thiele L. On the effects of archiv-ing, elitism, and density based selection in evolutionary multi-objective optimization. In Proc. the 1st EMO, March 2001,pp.181-196.
    [6]
    Fieldsend J E, Everson R M, Singh S. Using unconstrainedelite archives for multiobjective optimization. IEEE Trans.Evolutionary Computation, 2003, 7(3): 305-323.
    [7]
    Everson R M, Fieldsend J E, Singh S. Full elite sets for multi-objective optimisation. In Proc. the 5th Int. Conf. AdaptiveComputing Design and Manufacture, Apr. 2002, pp.343-354.
    [8]
    Finkel R A, Bentley J L. Quad trees a data structure for re-trieval on composite keys. Acta Informatica, 1974, 4(1): 1-9.
    [9]
    Shi C, Li Y, Kang L S. A new simple and highly efficientmulti-objective optimal evolutionary algorithm. In Proc. the2003 CEC, Dec. 2003, pp.1536-1542.
    [10]
    Zitzler E, Laumanns M, Thiele L. SPEA2: Improving thestrength Pareto evolutionary algorithm for multiobjective op-timization. In Proc. EUROGEN 2001, Sept. 2001, pp.95-100.
    [11]
    Mostaghim S, Teich J, Tyagi A. Comparison of data struc-tures for storing Pareto-sets in MOEAs. In Proc. Cong.Evolutionary Computation, May 2002, pp.843-848.
    [12]
    Coello Coello A C, Lamont G B, Veldhuizen D A. Evolution-ary Algorithms for Solving Multi-Objective Problems (2ndedition), Springer, 2007.
    [13]
    Zitzler E, Thiele L. Multiobjective evolutionary algorithms:A comparative case study and the strength Pareto approach.IEEE Trans. Evolutionary Computation, 1999, 3(4): 257-271.
    [14]
    Mostaghim S, Teich J. Quad-trees: A data structure for stor-ing Pareto sets in multiobjective evolutionary algorithms withelitism. In Evolutionary Multiobjective Optimization. Theo-retical Advances and Applications, Abraham A, Jain L, Gold-berg R (eds.), Springer, 2005, pp.81-104.
    [15]
    Mostaghim S. Multi-objective evolutionary algorithms: Datastructures, convergence and diversity [Ph.D. Thesis]. FakultätElektrotechnik, Informatik und Mathematik der UniversitätPaderborn, Paderborn, Germany, Nov. 2004.
    [16]
    Mostaghim S, Teich J, Tyagi A. Comparison of differentdata structures for storing Pareto-points. Technical Report,Paderborn Univ., In Date report number 02, Electrical Engi-neering Lab, Germany, 2001. (in Datentechnik)
    [17]
    Fieldsend J E. Novel algorithms for multi-objective searchand their application in multi-objective evolutionary neuralnetwork training [Ph.D. Thesis]. Dept. Comp. Sci., Univ.Exeter, Exeter, UK, Jun. 2003.
    [18]
    Fieldsend J E, Singh S. A multi-objective algorithm basedupon particle swarm optimisation, an efficient data structureand turbulence. In Proc. the 2002 UK Workshop on Com-putational Intelligence, Sept. 2002, pp.37-44.
    [19]
    Sch黷ze O. A new data structure for the nondominance prob-lem in multi-objective optimization. In Proc. the 2nd EMO,Apr. 2003, pp.509-518.
    [20]
    Chen X. Pareto tree searching genetic algorithm: Approach-ing Pareto optimal front by searching Pareto optimal tree.Technical Report NK-CS-2001-002, Dept. Comp. Sci.,Nankai Univ., Tianjin, China, 2001.
    [21]
    Shi C, Li Q, Zhang Z, Shi Z. An improved multiobjective evo-lutionary algorithm based on dominating tree. In Proc. the9th PRICAI, Aug. 2006, pp.691-700.
    [22]
    Shi C, Yan Z, Shi Z, Zhang L. A fast multi-objective evo-lutionary algorithm based on a tree structure. Applied SoftComputing, 2009, 10(2): 468-480.
    [23]
    Shi C, Yan Z, Lv K, Shi Z, Wang B. A dominance tree andits application in evolutionary multi-objective optimization.Information Sciences, 2009, 179(20): 3540-3560.
    [24]
    Alberto I, Mateo P M. Representation and management ofMOEA populations based on graphs. European Journal ofOperational Research, 2004, 159(1): 52-65.
    [25]
    Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and eli-tist multiobjective genetic algorithm: NSGA-II. IEEE Trans.Evolutionary Computation, 2002, 6(2): 182-197.
    [26]
    Li M, Zheng J, Xiao G. An efficient multi-objective evolu-tionary algorithm based on minimum spanning tree. In Proc.2008 CEC, Jun. 2008, pp.617-624.
  • Related Articles

    [1]Wen-Tai Li, Zi-Xuan Wang, Jin-Yu Gu, Yu-Bin Xia, Bin-Yu Zang. Harmonizing Security and Performance in Microkernel File Servers[J]. Journal of Computer Science and Technology, 2025, 40(2): 464-481. DOI: 10.1007/s11390-025-3762-3
    [2]Hong-Na Geng, Fang Lyu, Ming Zhong, Hui-Min Cui, Jingling Xue, Xiao-Bing Feng. Automatic Target Description File Generation[J]. Journal of Computer Science and Technology, 2023, 38(6): 1339-1355. DOI: 10.1007/s11390-022-1919-x
    [3]Yuan Li, Xing-Chen Wang, Lin Huang, Yun-Lei Zhao. Order-Revealing Encryption: File-Injection Attack and Forward Security[J]. Journal of Computer Science and Technology, 2021, 36(4): 877-895. DOI: 10.1007/s11390-020-0060-y
    [4]Heng Bu, Ming-Kai Dong, Ji-Fei Yi, Bin-Yu Zang, Hai-Bo Chen. Revisiting Persistent Indexing Structures on Intel Optane DC Persistent Memory[J]. Journal of Computer Science and Technology, 2021, 36(1): 140-157. DOI: 10.1007/s11390-020-9871-0
    [5]Zhi-Guang Chen, Yu-Bo Liu, Yong-Feng Wang, Yu-Tong Lu. A GPU-Accelerated In-Memory Metadata Management Scheme for Large-Scale Parallel File Systems[J]. Journal of Computer Science and Technology, 2021, 36(1): 44-55. DOI: 10.1007/s11390-020-0783-9
    [6]André Brinkmann, Kathryn Mohror, Weikuan Yu, Philip Carns, Toni Cortes, Scott A. Klasky, Alberto Miranda, Franz-Josef Pfreundt, Robert B. Ross, Marc-André Vef. Ad Hoc File Systems for High-Performance Computing[J]. Journal of Computer Science and Technology, 2020, 35(1): 4-26. DOI: 10.1007/s11390-020-9801-1
    [7]An Qin, Dian-Ming Hu, Jun Liu, Wen-Jun Yang, Dai Tan. Fatman: Building Reliable Archival Storage Based on Low-Cost Volunteer Resources[J]. Journal of Computer Science and Technology, 2015, 30(2): 273-282. DOI: 10.1007/s11390-015-1521-6
    [8]Bing-Qing Shao, Jun-Wei Zhang, Cai-Ping Zheng, Hao Zhang, Zhen-Jun Liu, Lu Xu. A Non-Forced-Write Atomic Commit Protocol for Cluster File Systems[J]. Journal of Computer Science and Technology, 2014, 29(2): 303-315. DOI: 10.1007/s11390-014-1432-y
    [9]Shao-Liang Peng, Shan-Shan Li, Xiang-Ke Liao, Yu-Xing Peng, Nong Xiao. Estimation of a Population Size in Large-Scale Wireless Sensor Networks[J]. Journal of Computer Science and Technology, 2009, 24(5): 987-997.
    [10]Zeng Jianchao, Hidehilio Sanada, Yoshikazu Tezuka. A Form Evaluation System and Its Data Structure for Brush-Written Chinese Characters[J]. Journal of Computer Science and Technology, 1995, 10(1): 35-41.

Catalog

    Article views (31) PDF downloads (1651) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return