SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Lan Yao, Feng Zeng, Dong-Hui Li, Zhi-Gang Chen. Sparse Support Vector Machine with Lp Penalty for Feature Selection[J]. Journal of Computer Science and Technology, 2017, 32(1): 68-77. DOI: 10.1007/s11390-017-1706-2 |
[1] |
Vapnik V N. The Nature of Statistical Learning Theory (2nd edition). Springer, 2000.
|
[2] |
Guyon I, Gunn S, Nikravesh M, Zadeh L A. Feature Extraction:Foundations and Applications (1st edition). Springer, 2006.
|
[3] |
Saeys Y, Inza I, Larranagal P. A review of feature selection techniques in bioinformatics. Bioinformatics, 2007, 23(19):2507-2517.
|
[4] |
Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning, 2002, 46(1/2/3):389-422.
|
[5] |
Rakotomamonjy A. Variable selection using SVM based criteria. The Journal of Machine Learning Research, 2003, 3:1357-1370.
|
[6] |
Weston J, Mukherjee S, Chapelle O, Pontil M, Poggio T, Vapnik V. Feature selection for SVMs. In Advances in Neural Information Processing Systems 13, Leen T K, Dietterich T G, Tresp V (eds.), Massachusetts Institute of Technology, 2001, pp.668-674.
|
[7] |
Peleg D, Meir R. A feature selection algorithm based on the global minimization of a generalization error bound. In Advances in Neural Information Processing Systems 17, Saul L K, Weiss Y, Bottou L (eds.), Massachusetts Institute of Technology, 2005, pp.1065-1072.
|
[8] |
Bradley P S, Mangasarian O L. Feature selection via concave minimization and support vector machines. In Proc. the 5th International Conference on Machine Learning, July 1998, pp.82-90.
|
[9] |
Weston J, Elisseeff A, Schölkopf B, Tipping M. Use of the zero norm with linear models and kernel methods. The Journal of Machine Learning Research, 2003, 3:1439-1461.
|
[10] |
Amaldi E, Kann V. On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theoretical Computer Science, 1998, 209(1/2):237-260.
|
[11] |
Chan A B, Vasconcelos N, Lanckriet G R G. Direct convex relaxations of sparse SVM. In Proc. the 24th International Conference on Machine Learning, June 2007, pp.145-153.
|
[12] |
Fung G M, Mangasarian O L. A feature selection newton method for support vector machine classification. Computational Optimization and Applications, 2004, 28(2):185-202.
|
[13] |
Bi J B, Bennett K, Embrechts M, Breneman C, Song M H. Dimensionality reduction via sparse support vector machines. The Journal of Machine Learning Research, 2003, 3:1229-1243.
|
[14] |
Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B (Methodological), 1996, 58(1):267-288.
|
[15] |
Neumann J, Schnörr C, Steidl G. Combined SVM-based feature selection and classification. Machine Learning, 2005, 61(1/2/3):129-150.
|
[16] |
Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing Letters, 2007, 14(10):707-710.
|
[17] |
Chartrand R. Nonconvex regularization for shape preservation. In Proc. the IEEE International Conference on Image Processing, September 16-October 19, 2007, pp.293-296.
|
[18] |
Xu Z B, Zhang H, Wang Y, Chang X Y, Liang Y. L1/2 regularization. Science China Information Sciences, 2010, 53(6):1159-1169.
|
[19] |
Liu J L, Li J P, Xu W X, Shi Y. A weighted Lq adaptive least squares support vector machine classifiers-Robust and sparse approximation. Expert Systems with Applications, 2011, 38(3):2253-2259.
|
[20] |
Chen W J, Tian Y J. Lp-norm proximal support vector machine and its applications. Procedia Computer Science, 2010, 1(1):2417-2423.
|
[21] |
Rakotomamonjy A, Flamary R, Gasso G, Canu S. lp-lq penalty for sparse linear and sparse multiple kernel multitask learning. IEEE Transactions on Neural Networks, 2011, 22(8):1307-1320.
|
[22] |
Liu Y F, Zhang H H, Park C, Ahn J. Support vector machines with adaptive Lq penalty. Computational Statistics and Data Analysis, 2007, 51(12):6380-6394.
|
[23] |
Liu Z Q, Lin S L, Tan M. Sparse support vector machines with L p penalty for biomarker identification. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2010, 7(1):100-107.
|
[24] |
Tan J Y, Zhang Z Q, Zhen L, Zhang C H, Deng N Y. Adaptive feature selection via a new version of support vector machine. Neural Computing and Applications, 2013, 23(3/4):937-945.
|
[25] |
Tian Y J, Yu J, Chen W J. lp-norm support vector machine with CCCP. In Proc. the 7th International Conference on Fuzzy Systems and Knowledge Discovery, August 2010, pp.1560-1564.
|
[26] |
Liu J W, Liu Y. Non-integer norm regularization SVM via Legendre-Fenchel duality. Neurocomputing, 2014, 144:537-545.
|
[27] |
Chen X J, Xu F M, Ye Y Y. Lower bound theory of nonzero entries in solutions of l2-lp minimization. SIAM J. Sci. Comput., 2010, 32(5):2832-2852.
|
[28] |
Zhang C H, Shao Y H, Tan J Y, Deng N Y. Mixed-norm linear support vector machine. Neural Computing and Applications, 2013, 23(7):2159-2166.
|
[29] |
Li D H, Wu L, Sun Z, Zhang X J. A constrained optimization reformulation and a feasible descent direction method for L1/2 regularization. Computational Optimization and Applications, 2014, 59(1/2):263-284.
|
[30] |
Newman D J, Hettich S, Blake C L, Merz C J. UCI repository of machine learning databases. Technical Report 9702, Department of Information and Computer Science, University of California, Irvine, 1998. http://archive.ics.uci.edu/ml/, Nov. 2016
|
[1] | Wei-Dong Wang, Zhi Li, Li Zhang. Combining Innovative CVTNet and Regularization Loss for Robust Adversarial Defense[J]. Journal of Computer Science and Technology, 2024, 39(5): 1078-1093. DOI: 10.1007/s11390-024-3515-8 |
[2] | Li-Gang Gao, Meng-Yun Yang, Jian-Xin Wang. Collaborative Matrix Factorization with Soft Regularization for Drug-Target Interaction Prediction[J]. Journal of Computer Science and Technology, 2021, 36(2): 310-322. DOI: 10.1007/s11390-021-0844-8 |
[3] | Xiang-Jun Lu, Chi Zhang, Da-Wu Gu, Jun-Rong Liu, Qian Peng, Hai-Feng Zhang. Evaluating and Improving Linear Regression Based Profiling: On the Selection of Its Regularization[J]. Journal of Computer Science and Technology, 2020, 35(5): 1175-1197. DOI: 10.1007/s11390-020-9669-0 |
[4] | Shu-Zheng Zhang, Zhen-Yu Zhao, Chao-Chao Feng, Lei Wang. A Machine Learning Framework with Feature Selection for Floorplan Acceleration in IC Physical Design[J]. Journal of Computer Science and Technology, 2020, 35(2): 468-474. DOI: 10.1007/s11390-020-9688-x |
[5] | Cheng-Zhang Zhu, Rong Hu, Bei-Ji Zou, Rong-Chang Zhao, Chang-Long Chen, Ya-Long Xiao. Automatic Diabetic Retinopathy Screening via Cascaded Framework Based on Image- and Lesion-Level Features Fusion[J]. Journal of Computer Science and Technology, 2019, 34(6): 1307-1318. DOI: 10.1007/s11390-019-1977-x |
[6] | Tie-Ke He, Hao Lian, Ze-Min Qin, Zhen-Yu Chen, Bin Luo. PTM: A Topic Model for the Inferring of the Penalty[J]. Journal of Computer Science and Technology, 2018, 33(4): 756-767. DOI: 10.1007/s11390-018-1854-z |
[7] | Zhong-Gui Sun, Song-Can Chen, Li-Shan Qiao. A Two-Step Regularization Framework for Non-Local Means[J]. Journal of Computer Science and Technology, 2014, 29(6): 1026-1037. DOI: 10.1007/s11390-014-1487-9 |
[8] | Tapio Pahikkala, Antti Airola, Fabian Gieseke, Oliver Kramer. On Unsupervised Training of Multi-Class Regularized Least-Squares Classifiers[J]. Journal of Computer Science and Technology, 2014, 29(1): 90-104. DOI: 10.1007/s11390-013-1414-5 |
[9] | Wei Wu, Hang Li, Yun-Hua Hu, Rong Jin. A Kernel Approach to Multi-Task Learning with Task-Specific Kernels[J]. Journal of Computer Science and Technology, 2012, 27(6): 1289-1301. DOI: 10.1007/s11390-012-1305-1 |
[10] | Bin Gu, Jian-Dong Wang, Tao Li. Ordinal-Class Core Vector Machine[J]. Journal of Computer Science and Technology, 2010, 25(4): 699-708. DOI: 10.1007/s11390-010-1054-y |