SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Hanen Ameur, Salma Jamoussi, Abdelmajid Ben Hamadou. A New Method for Sentiment Analysis Using Contextual Auto-Encoders[J]. Journal of Computer Science and Technology, 2018, 33(6): 1307-1319. DOI: 10.1007/s11390-018-1889-1 |
[1] |
Fu X, Xu Y. Recursive autoencoder with HowNet lexicon for sentence-level sentiment analysis. In Proc. ASE BigData and Social Informatics, Oct. 2015, Article No. 20.
|
[2] |
Ameur H, Jamoussi S. Dynamic construction of dictionaries for sentiment classification. In Proc. the 13th IEEE International Conference on Data Mining Workshops, Dec. 2013, pp.896-903.
|
[3] |
Cambria E, Schuller B, Xia Y, Havasi C. New avenues in opinion mining and sentiment analysis. IEEE Intelligent Systems, 2013, 28(2):15-21.
|
[4] |
Socher R, Perelygin A, Wu J, Chuang J, Manning C D, Andrew Y N, Christopher P. Recursive deep models for semantic compositionality over a sentiment treebank. In Proc. Conference on Empirical Methods in Natural Language Processing, Oct. 2013, pp.1631-1642.
|
[5] |
Yin H, Zhang C, Zhu Y, Ji Y. Representing sentence with unfolding recursive autoencoders and dynamic average pooling. In Proc. IEEE International Conference on Data Science and Advanced Analytics, Oct. 2014, pp.413-419.
|
[6] |
Ameur H, Jamoussi S, Hamadou A B. Sentiment lexicon enrichment using emotional vector representation. In Proc. the 14th IEEE/ACS International Conference on Computer Systems and Applications, Oct. 2017, pp.951-958.
|
[7] |
Rong W, Nie Y, Ouyang Y, Peng B, Xiong Z. Auto-encoder based bagging architecture for sentiment analysis. Journal of Visual Languages and Computing, 2014, 25(6):840-849.
|
[8] |
Pang B, Lee L, Vaithyanathan S. Thumbs up? Sentiment classification using machine learning techniques. In Proc. ACL-02 Conference on Empirical Methods in Natural Language Processing, Volume 10, Jul. 2002, pp.79-86.
|
[9] |
Bengio Y. Learning deep architectures for AI. Foundations and Trendsr in Machine Learning, 2009, 2(1):1-127.
|
[10] |
Blacoe W, Lapata M. A comparison of vector-based representations for semantic composition. In Proc. Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Jul. 2012, pp.546-556.
|
[11] |
Socher R, Pennington J, Huang E H, Ng A Y, Manning C D. Semi-supervised recursive autoencoders for predicting sentiment distributions. In Proc. the 11th Conference on Empirical Methods in Natural Language Processing, Jul. 2011, pp.151-161.
|
[12] |
Poirier D. Des textes communautaires à la recommandation[Ph.D. Thesis], Orleans University, 2011. (in French)
|
[13] |
Martineau J, Finin T. Delta TFIDF:An improved feature space for sentiment analysis. In Proc. the 3rd AAAI International Conference on Weblogs and Social Media, May 2009, pp.258-261.
|
[14] |
Turney P D., Pantel P. From frequency to meaning:Vector space models of semantics. Journal of Artificial Intelligence Research, 2010, 37(1):141-188.
|
[15] |
Chen L. Curse of dimensionality. In Encyclopedia of Database Systems, Liu L, Özsu M T (eds.), Springer, 2009, pp.545-546.
|
[16] |
Mikolov T, Yih S W, Zweig G. Linguistic regularities in continuous space word representations. In Proc. the 2013 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, May 2013, pp.746-751.
|
[17] |
Zhang P, Komachi M. Japanese sentiment classification with stacked denoising autoencoder using distributed word representation. In Proc. the 29th Pacific Asia Conference on Language, Information and Computation, Oct. 2015, pp.150-159.
|
[18] |
Cho K, van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning phrase representations using RNN encoder decoder for statistical machine translation. In Proc. the 2014 Conference on Empirical Methods in Natural Language Processing, Oct. 2014, pp.1724-1734.
|
[19] |
Zhang Y, Er M J, Venkatesan R, Wang N, Pratama M. Sentiment classification using comprehensive attention recurrent models. In Proc. International Joint Conference on Neural Networks, July 2016, pp.1562-1569.
|
[20] |
Kim Y. Convolutional neural networks for sentence classification. In Proc. the 2014 Conference on Empirical Methods in Natural Language Processing, Oct. 2014, pp.1746-1751.
|
[21] |
Severyn A, Moschitti A. Twitter sentiment analysis with deep convolutional neural networks. In Proc. the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Aug. 2015, pp.959-962.
|
[22] |
Sun X, Li C, Ren F. Sentiment analysis for Chinese microblog based on deep neural networks with convolutional extension features. Neurocomputing, 2016, 210:227-236.
|
[23] |
Zhao R, Mao K. Topic-aware deep compositional models for sentence classification. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2017, 25(2):248-260.
|
[24] |
Bengio Y. Deep learning of representations:Looking forward. arXiV:1305.0445, 2013. https://arXiv.org/abs/1305.0445/, May 2018.
|
[25] |
Kumar V. Sentiment analysis using semi-supervised recursive autoencoder. In Proc. the International Joint Conferences on Web Intelligence and Intelligent Agent Technologies, December 2015.
|
[26] |
Tang, Y. Deep learning using support vector machines. arXiV:1306.0239, 2013. https://arXiv.org/abs/1306.0239V/, May 2018.
|
[27] |
Ebert S, Vu T N, Schütze H. CIS-positive:A combination of convolutional neural networks and support vector machines for sentiment analysis in Twitter. In Proc. the 9th International Workshop on Semantic Evaluation, Jun. 2015, pp.527-532.
|
[28] |
Turian J, Ratinov L, Bengio Y. Word representations:A simple and general method for semi-supervised learning. In Proc. the 48th Annual Meeting of the Association for Computational Linguistics, Jul. 2010, pp.384-394.
|
[1] | Chao Kong, Bao-Xiang Chen, Li-Ping Zhang. DEM: Deep Entity Matching Across Heterogeneous Information Networks[J]. Journal of Computer Science and Technology, 2020, 35(4): 739-750. DOI: 10.1007/s11390-020-0139-5 |
[2] | Yue Kou, De-Rong Shen, Dong Li, Tie-Zheng Nie, Ge Yu. Finding Communities by Decomposing and Embedding Heterogeneous Information Network[J]. Journal of Computer Science and Technology, 2020, 35(2): 320-337. DOI: 10.1007/s11390-020-9957-8 |
[3] | Xin Yang, Dawei Wang, Wenbo Hu, Li-Jing Zhao, Bao-Cai Yin, Qiang Zhang, Xiao-Peng Wei, Hongbo Fu. DEMC: A Deep Dual-Encoder Network for Denoising Monte Carlo Rendering[J]. Journal of Computer Science and Technology, 2019, 34(5): 1123-1135. DOI: 10.1007/s11390-019-1964-2 |
[4] | Lin Yue, Xiao-Xin Sun, Wen-Zhu Gao, Guo-Zhong Feng, Bang-Zuo Zhang. Multiple Auxiliary Information Based Deep Model for Collaborative Filtering[J]. Journal of Computer Science and Technology, 2018, 33(4): 668-681. DOI: 10.1007/s11390-018-1848-x |
[5] | Yong-Quan Dong, Qing-Zhong Li, Yan-Hui Ding, Zhao-Hui Peng. A Query Interface Matching Approach Based on Extended Evidence Theory for Deep Web[J]. Journal of Computer Science and Technology, 2010, 25(3): 537-547. |
[6] | Lao Zhiqiang, Pan Yunhe. A Knowledge Representation Model for Video-Based Animation[J]. Journal of Computer Science and Technology, 1998, 13(3): 228-237. |
[7] | Chung-Han CHEN. Embedding Binary Tree in VLSI/WSI Processor Array[J]. Journal of Computer Science and Technology, 1996, 11(3): 326-336. |
[8] | Fan Zhongchun, Xing Hancheng. DKLFRS:A Default Knowledge Logical Framework Representation System[J]. Journal of Computer Science and Technology, 1992, 7(2): 136-142. |
[9] | L Wei, Liang Youdong. A New Representation and Algorithm for Constructing Convex Hulls in Higher Dim ensional Spaces[J]. Journal of Computer Science and Technology, 1992, 7(1): 1-5. |
[10] | Tai Juwei, Wang Jue, Chen Xin. A Syntactic-Semantic Approach for Pattern Recognition and Knowledge Representation[J]. Journal of Computer Science and Technology, 1988, 3(3): 161-172. |