We use cookies to improve your experience with our site.

Indexed in:

SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.

Submission System
(Author / Reviewer / Editor)
Dun Liang, Yuan-Chen Guo, Shao-Kui Zhang, Tai-Jiang Mu, Xiaolei Huang. Lane Detection: A Survey with New Results[J]. Journal of Computer Science and Technology, 2020, 35(3): 493-505. DOI: 10.1007/s11390-020-0476-4
Citation: Dun Liang, Yuan-Chen Guo, Shao-Kui Zhang, Tai-Jiang Mu, Xiaolei Huang. Lane Detection: A Survey with New Results[J]. Journal of Computer Science and Technology, 2020, 35(3): 493-505. DOI: 10.1007/s11390-020-0476-4

Lane Detection: A Survey with New Results

Funds: This work was supported by the National Natural Science Foundation of China under Grant Nos. 61902210 and 61521002, a research grant from the Beijing Higher Institution Engineering Research Center, and the Tsinghua-Tencent Joint Laboratory for Internet Innovation Technology.
More Information
  • Author Bio:

    Dun Liang is a Ph.D. candidate in the Department of Computer Science and Technology at Tsinghua University, Beijing, where he received his B.S. degree in computer science and technology, in 2016. His research interests include computer graphics, visual media and high-performance computing.

  • Corresponding author:

    Tai-Jiang Mu E-mail:taijiang@tsinghua.edu.cn

  • Received Date: March 27, 2020
  • Revised Date: April 16, 2020
  • Published Date: May 27, 2020
  • Lane detection is essential for many aspects of autonomous driving, such as lane-based navigation and highdefinition (HD) map modeling. Although lane detection is challenging especially with complex road conditions, considerable progress has been witnessed in this area in the past several years. In this survey, we review recent visual-based lane detection datasets and methods. For datasets, we categorize them by annotations, provide detailed descriptions for each category, and show comparisons among them. For methods, we focus on methods based on deep learning and organize them in terms of their detection targets. Moreover, we introduce a new dataset with more detailed annotations for HD map modeling, a new direction for lane detection that is applicable to autonomous driving in complex road conditions, a deep neural network LineNet for lane detection, and show its application to HD map modeling.
  • [1]
    Zhu Z, Liang D, Zhang S, Huang X, Li B, Hu S. Trafficsign detection and classification in the wild. In Proc. the 2016 IEEE Conference on Computer Vision and Pattern Recognition, June 2016, pp.2110-2118.
    [2]
    Lu Y, Lu J, Zhang S, Hall P. Traffic signal detection and classification in street views using an attention model. Computational Visual Media, 2018, 4(3):253-266.
    [3]
    Song Y, Fan R, Huang S, Zhu Z, Tong R. A three-stage real-time detector for traffic signs in large panoramas. Computational Visual Media, 2019, 5(4):403-416.
    [4]
    Máttyus G, Wang S, Fidler S, Urtasun R. HD maps:Finegrained road segmentation by parsing ground and aerial images. In Proc. the 2016 IEEE Conference on Computer Vision and Pattern Recognition, June 2016, pp.3611-3619.
    [5]
    Bittel S, Rehfeld T, Weber M, Zöllner J M. Estimating high definition map parameters with convolutional neural networks. In Proc. the 2017 IEEE International Conference on Systems, Man, and Cybernetics, October 2017, pp.52-56.
    [6]
    Zang A, Xu R, Li Z, Doria D. Lane boundary extraction from satellite imagery. In Proc. the 1st ACM SIGSPATIAL Workshop on High-Precision Maps and Intelligent Applications for Autonomous Vehicles, November 2017, Article No. 1.
    [7]
    Yuan J Z, Chen H, Zhao B, Xu Y. Estimation of vehicle pose and position with monocular camera at urban road intersections. Journal of Computer Science and Technology, 2017, 32(6):1150-1161.
    [8]
    Yenikaya S, Yenikaya G, Düven E. Keeping the vehicle on the road:A survey on on-road lane detection systems. ACM Computing Surveys, 2013, 46(1):Article No. 2.
    [9]
    Bar-Hillel A, Lerner R, Levi D, Raz G. Recent progress in road and lane detection:A survey. Machine Vision and Applications, 2014, 25(3):727-745.
    [10]
    Fritsch J, Kühnl T, Geiger A. A new performance measure and evaluation benchmark for road detection algorithms. In Proc. the 16th International IEEE Conference on Intelligent Transportation Systems, October 2013, pp.1693-1700.
    [11]
    Berriel R F, de Aguiar E, de Souza A F, Oliveira-Santos T. Ego-Lane Analysis System (ELAS):Dataset and algorithms. Image and Vision Computing, 2017, 68:64-75.
    [12]
    Aly M. Real time detection of lane markers in urban streets. In Proc. the 2008 IEEE Intelligent Vehicles Symposium, June 2008, pp.7-12.
    [13]
    Yu F, Chen H, Wang X, Xian W, Chen Y, Liu F, Madhavan V, Darrell T. BDD100K:A diverse driving dataset for heterogeneous multitask learning. In Proc. the IEEE Conference on Computer Vision and Pattern Recognition, 2020.(Accepted)
    [14]
    Lee S, Kim J, Yoon J S, Shin S, Bailo O, Kim N, Lee T, Hong H S, Han S, Kweon I S. VPGNet:Vanishing point guided network for lane and road marking detection and recognition. In Proc. the 2017 IEEE International Conference on Computer Vision, October 2017, pp.1965-1973.
    [15]
    Pan X, Shi J, Luo P, Wang X, Tang X. Spatial as deep:Spatial CNN for traffic scene understanding. In Proc. the 32nd AAAI Conference on Artificial Intelligence, February 2018, pp.7276-7283.
    [16]
    Liang X, Wei Y, Shen X, Jie Z, Feng J, Lin L, Yan S. Reversible recursive instance-level object segmentation. In Proc. the 2016 IEEE Conference on Computer Vision and Pattern Recognition, June 2016, pp.633-641.
    [17]
    Oliveira G L, Burgard W, Brox T. Efficient deep models for monocular road segmentation. In Proc. the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2016, pp.4885-4891.
    [18]
    Liu X, Deng Z, Yang G. Drivable road detection based on dilated FPN with feature aggregation. In Proc. the 29th IEEE International Conference on Tools with Artificial Intelligence, November 2017, pp.1128-1134.
    [19]
    Kim J, Park C. End-to-end ego lane estimation based on sequential transfer learning for self-driving cars. In Proc. the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, July 2017, pp.1194-1202.
    [20]
    Chen Z, Chen Z. RBNet:A deep neural network for unified road and road boundary detection. In Proc. the 24th International Conference on Neural Information Processing, November 2017, pp.677-687.
    [21]
    Teichmann M, Weber M, Zöllner J M, Cipolla R, Urtasun R. MultiNet:Real-time joint semantic reasoning for autonomous driving. In Proc. the 2018 IEEE Intelligent Vehicles Symposium, June 2018, pp.1013-1020.
    [22]
    Lyu Y, Bai L, Huang X. Road segmentation using CNN and distributed LSTM. In Proc. the IEEE International Symposium on Circuits and Systems, May 2019.
    [23]
    Mamidala R S, Uthkota U, Shankar M B, Antony A J, Narasimhadhan A V. Dynamic approach for lane detection using Google street view and CNN. In Proc. the 2019 IEEE Region 10 Conference, October 2019, pp.2454-2459.
    [24]
    Li J, Mei X, Prokhorov D V, Tao D. Deep neural network for structural prediction and lane detection in traffic scene. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3):690-703.
    [25]
    Hou Y, Ma Z, Liu C, Loy C C. Learning lightweight lane detection CNNs by self attention distillation. In Proc. the 2019 IEEE/CVF International Conference on Computer Vision, October 2019, pp.1013-1021.
    [26]
    Fan R, Wang X, Hou Q, Liu H, Mu T J. SpinNet:Spinning convolutional network for lane boundary detection. Computational Visual Media, 2019, 5(4):417-428.
    [27]
    Pizzati F, Allodi M, Barrera A, García F. Lane detection and classification using cascaded CNNs. arXiv:1907.01294, 2019. https://arxiv.org/abs/1907.01294, March 2020.
    [28]
    Philion J. FastDraw:Addressing the long tail of lane detection by adapting a sequential prediction network. In Proc. the IEEE Conference on Computer Vision and Pattern Recognition, June 2019, pp.11582-11591.
    [29]
    De Brabandere B D, Neven D, Gool L V. Semantic instance segmentation with a discriminative loss function. In Proc. the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, July 2017.
    [30]
    Neven D, De Brabandere B, Georgoulis S, Proesmans M, Gool L V. Towards end-to-end lane detection:An instance segmentation approach. In Proc. the 2018 IEEE Intelligent Vehicles Symposium, June 2018, pp.286-291.
    [31]
    Hsu Y, Xu Z, Kira Z, Huang J. Learning to cluster for proposal-free instance segmentation. In Proc. the 2018 International Joint Conference on Neural Networks, July 2018.
    [32]
    Chen P, Lo S, Hang H, Chan S, Lin J. Efficient road lane marking detection with deep learning. In Proc. the 23rd IEEE International Conference on Digital Signal Processing, November 2018.
    [33]
    Chang D, Chirakkal V V, Goswami S, Hasan M, Jung T, Kang J, Kee S, Lee D, Singh A P. Multi-lane detection using instance segmentation and attentive voting. In Proc. the 19th International Conference on Control, Automation and Systems, October 2019, pp. 1538-1542.
    [34]
    Paszke A, Chaurasia A, Kim S, Culurciello E. ENet:A deep neural network architecture for realtime semantic segmentation. arXiv:1606.02147, 2016. http://arxiv.org/abs/1606.02147, March 2020.
    [35]
    He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In Proc. the 2016 IEEE Conference on Computer Vision and Pattern Recognition, June 2016, pp.770-778.
    [36]
    Jung H, Min J, Kim J. An efficient lane detection algorithm for lane departure detection. In Proc. the 2013 IEEE Intelligent Vehicles Symposium, June 2013, pp.976-981.
    [37]
    Beyeler M, Mirus F, Verl A. Vision-based robust road lane detection in urban environments. In Proc. the 2014 IEEE International Conference on Robotics and Automation, May 2014, pp.4920-4925.
    [38]
    He B, Ai R, Yan Y, Lang X. Accurate and robust lane detection based on dual-view convolutional neutral network. In Proc. the 2016 IEEE Intelligent Vehicles Symposium, June 2016, pp.1041-1046.
    [39]
    Azimi S M, Fischer P, Körner M, Reinartz P. Aerial laneNet:Lane-marking semantic segmentation in aerial imagery using wavelet-enhanced cost-sensitive symmetric fully convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5):2920-2938.
    [40]
    Kurz F, Azimi S M, Sheu C, d'Angelo P. Deep learning segmentation and 3D reconstruction of road markings using multiview aerial imagery. ISPRS International Journal of Geo-Information, 2019, 8(1):Article No. 47.
    [41]
    Bai M, Máttyus G, Homayounfar N, Wang S, Lakshmikanth S K, Urtasun R. Deep multi-sensor lane detection. In Proc. the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2018, pp.3102-3109.
    [42]
    Garnett N, Cohen R, Pe'er T, Lahav R, Levi D. 3D-laneNet:End-to-end 3D multiple lane detection. In Proc. the 2019 IEEE/CVF International Conference on Computer Vision, October 2019, pp.2921-2930.
    [43]
    Chen L, Papandreou G, Kokkinos I, Murphy K, Yuille A L. DeepLab:Semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
    [44]
    Ester M, Kriegel H, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. the 2nd International Conference on Knowledge Discovery and Data Mining, August 1996, pp. 226-231.
    [45]
    He K, Gkioxari G, Dollár P, Girshick R B. Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):386-397.
    [46]
    Hur J, Kang S, Seo S. Multi-lane detection in urban driving environments using conditional random fields. In Proc. the 2013 IEEE Intelligent Vehicles Symposium, June 2013, pp.1297-1302.
    [47]
    Chen P, Sun H, Fang Y, Huai J. Collusion-proof result inference in crowdsourcing. Journal of Computer Science and Technology, 2018, 33(2):351-365.
    [48]
    Zhang A, Li J, Gao H, Chen Y, Ma H, Bah M J. CrowdOLA:Online aggregation on duplicate data powered by crowdsourcing. Journal of Computer Science and Technology, 2018, 33(2):366-379.
    [49]
    Mendiboure L, Chalouf M A, Krief F. Edge computing based applications in vehicular environments:Comparative study and main issues. Journal of Computer Science and Technology, 2019, 34(4):869-886.
  • Related Articles

    [1]Yao-Yu Wang, Xiao-Hua Wan, Cheng Chen, Fa Zhang, Xue-Feng Cui. Central Feature Network Enables Accurate Detection of Both Small and Large Particles in Cryo-Electron Tomography[J]. Journal of Computer Science and Technology, 2025, 40(3): 792-804. DOI: 10.1007/s11390-025-4816-2
    [2]Jia-Wei Ge, Jiu-Xin Cao, Zhi-Xiang Zhao, Bo Liu. FSD-GAN: Generative Adversarial Training for Face Swap Detection via the Latent Noise Fingerprint[J]. Journal of Computer Science and Technology, 2025, 40(2): 397-412. DOI: 10.1007/s11390-024-3337-8
    [3]Min Shi, Hao Lu, Zhao-Xin Li, Deng-Ming Zhu, Zhao-Qi Wang. Accurate Robotic Grasp Detection with Angular Label Smoothing[J]. Journal of Computer Science and Technology, 2023, 38(5): 1149-1161. DOI: 10.1007/s11390-022-1458-5
    [4]Xiao-Qun Wu, Hai-Sheng Li, Jian Cao, Qiang Cai. Geometry of Motion for Video Shakiness Detection[J]. Journal of Computer Science and Technology, 2018, 33(3): 475-486. DOI: 10.1007/s11390-018-1832-5
    [5]Renzhen Ye, Xuelong Li. Collective Representation for Abnormal Event Detection[J]. Journal of Computer Science and Technology, 2017, 32(3): 470-479. DOI: 10.1007/s11390-017-1737-8
    [6]Jian Chen, Manar H. Alalfi, Thomas R. Dean, Ying Zou. Detecting Android Malware Using Clone Detection[J]. Journal of Computer Science and Technology, 2015, 30(5): 942-956. DOI: 10.1007/s11390-015-1573-7
    [7]Yuan Jiang, Ming Li, Zhi-Hua Zhou. Software Defect Detection with ROCUS[J]. Journal of Computer Science and Technology, 2011, 26(2): 328-342. DOI: 10.1007/s11390-011-1135-6
    [8]Alberto Rocha, TONG Fu, YAN Zhuangzhi. A Logic Filter for Tumor Detection on Mammograms[J]. Journal of Computer Science and Technology, 2000, 15(6): 629-632.
    [9]Wang Aiqun, Zheng Nanning. Multiplicative Inhibitory Velocity Detector and Multi-Velocity Motion Detection Neural Network Model[J]. Journal of Computer Science and Technology, 1998, 13(1): 41-54.
    [10]Huang Zhiyi, Hu Shouren. Detection of And-Parallelism in Logic Programs[J]. Journal of Computer Science and Technology, 1990, 5(4): 379-387.
  • Cited by

    Periodical cited type(43)

    1. Min-Hyeok Sun, Seung-Hyun Kong, Dong-Hee Paek. A Survey on Deep Learning-Based Lane Detection Algorithms for Camera and LiDAR. IEEE Transactions on Intelligent Transportation Systems, 2025, 26(6): 7319. DOI:10.1109/TITS.2025.3554695
    2. Ping Wang, Zhe Luo, Yunfei Zha, et al. End-to-End Lane Detection: A Two-Branch Instance Segmentation Approach. Electronics, 2025, 14(7): 1283. DOI:10.3390/electronics14071283
    3. Jinwei Zhang, Jinya Su, Jun Yang, et al. PortLaneNet: Enhancing Port RTG Lane Detection With Explicit Feature Learning Network. IEEE Transactions on Industrial Informatics, 2025, 21(3): 2154. DOI:10.1109/TII.2024.3495756
    4. Jing Zhao, Zengyu Qiu, Huiqin Hu, et al. HWLane: HW-Transformer for Lane Detection. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 9321. DOI:10.1109/TITS.2024.3386531
    5. Tong Chen, Jiguang Dai, Bihan Dong, et al. Road marking defect detection based on CFG_SI_YOLO network. Digital Signal Processing, 2024, 153: 104614. DOI:10.1016/j.dsp.2024.104614
    6. Andi Zang, Runsheng Xu, Goce Trajcevski, et al. Data Issues in High-Definition Maps Furniture – A Survey. ACM Transactions on Spatial Algorithms and Systems, 2024, 10(1): 1. DOI:10.1145/3627160
    7. Mei Qiu, Lauren Christopher, Stanley Yung-Ping Chien, et al. Intelligent Highway Adaptive Lane Learning System in Multiple ROIs of Surveillance Camera Video. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 8591. DOI:10.1109/TITS.2024.3358732
    8. Jiandong Zhao, Di Wu, Zhixin Yu, et al. DRMNet: A Multi-Task Detection Model Based on Image Processing for Autonomous Driving Scenarios. IEEE Transactions on Vehicular Technology, 2023, 72(12): 15341. DOI:10.1109/TVT.2023.3296735
    9. Junhua Wang, Chengmin Li, Ting Fu, et al. Automated Lane-Level Road Geometry Estimation Using Microscopic Trajectory Data. Journal of Advanced Transportation, 2023, 2023: 1. DOI:10.1155/2023/5583901
    10. Yunjian Feng, Jun Li. Robust Accurate Lane Detection and Tracking for Automated Rubber-Tired Gantries in a Container Terminal. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(10): 11254. DOI:10.1109/TITS.2023.3274767
    11. Peicheng Shi, Chenghui Zhang, Shucai Xu, et al. MT-Net: Fast video instance lane detection based on space time memory and template matching. Journal of Visual Communication and Image Representation, 2023, 91: 103771. DOI:10.1016/j.jvcir.2023.103771
    12. Long Chen, Yuchen Li, Chao Huang, et al. Milestones in Autonomous Driving and Intelligent Vehicles: Survey of Surveys. IEEE Transactions on Intelligent Vehicles, 2023, 8(2): 1046. DOI:10.1109/TIV.2022.3223131
    13. Abdessamad El Krine, Maxime Redondin, Joffrey Girard, et al. Does the Condition of the Road Markings Have a Direct Impact on the Performance of Machine Vision during the Day on Dry Roads?. Vehicles, 2023, 5(1): 286. DOI:10.3390/vehicles5010016
    14. Pengpeng Chen, Dongjingdian Liu, Shouwan Gao. Non-residual unrestricted pruned ultra-faster line detection for edge devices. Pattern Recognition, 2023, 137: 109321. DOI:10.1016/j.patcog.2023.109321
    15. Juan Luis Hortelano, Jorge Villagrá, Jorge Godoy, et al. Recent Developments on Drivable Area Estimation: A Survey and a Functional Analysis. Sensors, 2023, 23(17): 7633. DOI:10.3390/s23177633
    16. Jia-Qi Zhang, Hao-Bin Duan, Jun-Long Chen, et al. HoughLaneNet: Lane detection with deep hough transform and dynamic convolution. Computers & Graphics, 2023, 116: 82. DOI:10.1016/j.cag.2023.08.012
    17. Bilal Bataineh. A Novel Ego Lanes Detection Method for Autonomous Vehicles. Intelligent Automation & Soft Computing, 2023, 37(2): 1941. DOI:10.32604/iasc.2023.039868
    18. Khaled H. Almotairi. Hybrid adaptive method for lane detection of degraded road surface condition. Journal of King Saud University - Computer and Information Sciences, 2022, 34(8): 5261. DOI:10.1016/j.jksuci.2022.06.008
    19. Yanshu Jiang, Qingbo Dong, Liwei Deng. Robust 3D lane detection in complex traffic scenes using Att-Gen-LaneNet. Scientific Reports, 2022, 12(1) DOI:10.1038/s41598-022-15353-w
    20. Zengyu Qiu, Jing Zhao, Shiliang Sun. MFIALane: Multiscale Feature Information Aggregator Network for Lane Detection. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 24263. DOI:10.1109/TITS.2022.3195742
    21. Yan Liu, Jingwen Wang, Yujie Li, et al. Lane-GAN: A Robust Lane Detection Network for Driver Assistance System in High Speed and Complex Road Conditions. Micromachines, 2022, 13(5): 716. DOI:10.3390/mi13050716
    22. Sunil Kumar, Manisha Jailia, Sudeep Varshney. An efficient approach for highway lane detection based on the Hough transform and Kalman filter. Innovative Infrastructure Solutions, 2022, 7(5) DOI:10.1007/s41062-022-00887-9
    23. Malik Haris, Jin Hou, Xiaomin Wang. Lane Lines Detection under Complex Environment by Fusion of Detection and Prediction Models. Transportation Research Record: Journal of the Transportation Research Board, 2022, 2676(3): 342. DOI:10.1177/03611981211051334
    24. Chao Zuo, Yanyan Zhang. Focus on Point: Parallel Multiscale Feature Aggregation for Lane Key Points Detection. Applied Sciences, 2022, 12(12): 5975. DOI:10.3390/app12125975
    25. Michael Tschiedel, Michael Friedrich Russold, Eugenijus Kaniusas, et al. Real-time limb tracking in single depth images based on circle matching and line fitting. The Visual Computer, 2022, 38(8): 2635. DOI:10.1007/s00371-021-02138-x
    26. Felipe Franco, Max Mauro Dias Santos, Rui Tadashi Yoshino, et al. ROADLANE—The Modular Framework to Support Recognition Algorithms of Road Lane Markings. Applied Sciences, 2021, 11(22): 10783. DOI:10.3390/app112210783
    27. Yongkang Liu, John H. L. Hansen. A Review of UTDrive Studies: Learning Driver Behavior From Naturalistic Driving Data. IEEE Open Journal of Intelligent Transportation Systems, 2021, 2: 338. DOI:10.1109/OJITS.2021.3109039
    28. Wenbo Liu, Fei Yan, Jiyong Zhang, et al. A Robust Lane Detection Model Using Vertical Spatial Features and Contextual Driving Information. Sensors, 2021, 21(3): 708. DOI:10.3390/s21030708
    29. Weiwei Chen, Weixing Wang, Kevin Wang, et al. Lane departure warning systems and lane line detection methods based on image processing and semantic segmentation: A review. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7(6): 748. DOI:10.1016/j.jtte.2020.10.002
    30. Hang Hu. Research on the semantic segmentation algorithm for automatic driving with improved HRNet. 2022 3rd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), DOI:10.1109/ICBAIE56435.2022.9985813
    31. Long Yang Ma, Hao Zhu, Hong Duan. A Method of Multiple Lane Detection Based on Constraints of Lane Information. 2021 China Automation Congress (CAC), DOI:10.1109/CAC53003.2021.9727491
    32. Zengyu Qiu, Jing Zhao, Shiliang Sun. Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021). Lecture Notes in Electrical Engineering, DOI:10.1007/978-981-16-9492-9_16
    33. Jianxun Shi, Junzheng Wang, Jing Li. Fast Lane Detection Flexibly Adapting to Road Structure Information. 2022 41st Chinese Control Conference (CCC), DOI:10.23919/CCC55666.2022.9901803
    34. Yongnian Fan, Zhiguang Wang, Cheng Chen, et al. Artificial Neural Networks and Machine Learning – ICANN 2022. Lecture Notes in Computer Science, DOI:10.1007/978-3-031-15934-3_17
    35. Fatma Nur Ortatas, Emrah Cetin. Lane Tracking with Deep Learning: Mask RCNN and Faster RCNN. 2022 Innovations in Intelligent Systems and Applications Conference (ASYU), DOI:10.1109/ASYU56188.2022.9925296
    36. Rajesh Kannan Megalingam, Nidhin Chuzhiyil Pradeep, Aswin Reghu, et al. Lane Detection Using Hough Transform and Kalman Filter. 2024 International Conference on E-mobility, Power Control and Smart Systems (ICEMPS), DOI:10.1109/ICEMPS60684.2024.10559324
    37. Naveen Kuruba, Neel Badadare, Vikram Narayan, et al. A Generic Method to Estimate Camera Extrinsic Parameters. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), DOI:10.1109/ICASSP43922.2022.9747761
    38. Kanagamalliga S, Latha R, Sugitha N, et al. Real-Time Detection of Road Objects and Lane Markings for Autonomous Vehicles. 2025 5th International Conference on Trends in Material Science and Inventive Materials (ICTMIM), DOI:10.1109/ICTMIM65579.2025.10988008
    39. Felix Grün, Marcus Nolte, Markus Maurer. Towards Scenario- and Capability-Driven Dataset Development and Evaluation: An Approach in the Context of Mapless Automated Driving. 2024 IEEE Intelligent Vehicles Symposium (IV), DOI:10.1109/IV55156.2024.10588871
    40. Zhang Yun Xiang, Hailong Bao, Jiaye Yang, et al. End-to-end Self-attention Unstructured Lane Detection Adapted to Mining Areas. 2022 International Conference on Cyber-Physical Social Intelligence (ICCSI), DOI:10.1109/ICCSI55536.2022.9970592
    41. Markus Ziegler, Vishal Mhasawade, Martin Köppel, et al. A Comprehensive Framework for Evaluating Vision-Based on-Board Rail Track Detection. 2023 IEEE Intelligent Vehicles Symposium (IV), DOI:10.1109/IV55152.2023.10186659
    42. Xiang Gu, Wenjie Shu, Yuriy S. Shmaliy, et al. Research on the lane line detection method based on YOLOv5. Fifth International Conference on Artificial Intelligence and Computer Science (AICS 2023), DOI:10.1117/12.3009519
    43. Junbin Fang, Zewei Yang, Siyuan Dai, et al. Pattern Recognition and Computer Vision. Lecture Notes in Computer Science, DOI:10.1007/978-981-99-8435-0_38

    Other cited types(0)

Catalog

    Article views (603) PDF downloads (1) Cited by(43)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return